Business & Financial Aspects of Server Virtualization

Server virtualization falls within the domain of IT operations but it can very much be a business matter with a measurable impact on the bottom line. Esoteric as it may seem from a business perspective, the server platform, powered by the processor, can make a significant difference in the financial outcome of a virtualization effort.

Spotlight

IP Infusion

IP Infusion (www.ipinfusion.com), the leader in disaggregated networking solutions, delivers the best network OS for white box and network virtualization. IP Infusion offers network operating systems for both physical and virtual networks to carriers, service providers and enterprises to achieve the disaggregated networking model.

OTHER ARTICLES
Virtual Desktop Tools

Network Virtualization: The Future of Businesses and Networks

Article | August 12, 2022

Network virtualization has emerged as the widely recommended solution for the networking paradigm's future. Virtualization has the potential to revolutionize networks in addition to providing a cost-effective, flexible, and secure means of communication. Network virtualization isn't an all-or-nothing concept. It can help several organizations with differing requirements, or it can provide a bunch of new advantages for a single enterprise. It is the process of combining a network's physical hardware into a single, virtual network. This is often accomplished by running several virtual guest machines in software containers on a single physical host system. Network virtualization is indeed the new gold standard for networking, and it is being embraced by enterprises of all kinds globally. By integrating their current network gear into a single virtual network, businesses can reduce operating expenses, automate network and security processes, and lay the groundwork for future growth. Network virtualization also enables organizations to simulate traditional hardware like servers, storage devices, and network resources. The physical network performs basic tasks like packet forwarding, while virtual versions handle more complex activities like networking service management and deployment. Addressing Network Virtualization Challenges Surprisingly, IT teams might encounter network virtualization challenges that are both technical and non-technical in nature. Let's look at some common challenges and discuss how to overcome them. Change in Network Architecture Practically, the first big challenge is shifting from an architecture that depends heavily on routers, switches, and firewalls. Instead, these services are detached from conventional hardware and put on hypervisors that virtualize these operations. Virtualized network services are shared, scaled, and moved as required. Migrating current LANs and data centers to a virtualized platform require careful planning. This migration involves the following tasks: Determine how much CPU, computation, and storage resources will be required to run virtualized network services. Determine the optimal approach for integrating network resilience and security services. Determine how the virtualized network services will be implemented in stages to avoid disrupting business operations. The key to a successful migration is meticulous preparation by architects who understand the business's network requirements. This involves a thorough examination of existing apps and services, as well as a clear knowledge of how data should move across the company most effectively. Moreover, a progressive approach to relocation is often the best solution. In this instance, IT teams can make changes to the virtualization platform without disrupting the whole corporate network. Network Visibility Network virtualization has the potential to considerably expand the number of logical technology layers that must collaborate. As a result, traditional network and data center monitoring technologies no longer have insight into some of these abstracted levels. In other circumstances, visibility can be established, but the tools fail to show the information correctly so that network operators can understand it. In either case, deploying and managing modern network visibility technologies is typically the best choice. When an issue arises, NetOps personnel are notified of the specific service layer. Automation and AI The enhanced level of automation and self-service operations that can be built into a platform is a fundamental aspect of network virtualization. While these activities can considerably increase the pace of network upgrades while decreasing management overhead, they need the documentation and implementation of a new set of standards and practices. Understand that prior network architectures were planned and implemented utilizing actual hardware appliances on a hop-by-hop basis. A virtualized network, on the other hand, employs a centralized control plane to govern and push policies to all sections of the network. Changes may occur more quickly in this aspect, but various components must be coordinated to accomplish their roles in harmony. As a result, network teams should move their attention away from network operations that are already automated. Rather, their new responsibility is to guarantee that the core automation processes and AI are in sync in order to fulfill those automated tasks. Driving Competitive Edge with Network Virtualization Virtualization in networking or virtual machines within an organization is not a new trend. Even small and medium businesses have realized the benefits of network virtualization, especially when combined with a hosted cloud service provider. Because of this, the demand for enterprise network virtualization is rising, driving higher end-user demands and the proliferation of devices and business tools. These network virtualization benefits can help boost business growth and gain a competitive edge. Gaining a Competitive Edge: Network Virtualization Benefits Cost-Savings on Hardware Faster Desktop and Server Provisioning and Deployment Improved Data Security and Disaster Recovery Increasing IT Operational Efficiency Small Footprint and Energy Saving Network Virtualization: The Path to Digital Transformation Business is at the center of digital transformation, but technology is needed to make it happen. Integrated clouds, highly modern data centers, digital workplaces, and increased data center security are all puzzle pieces, and putting them all together requires a variety of various products and services that are deployed cohesively. The cloud revolution is still having an influence on IT, transforming how digital content is consumed and delivered. This should come as no surprise that such a shift has influenced how we feel about current networking. When it boils down to it, the purpose of digital transformation for every company, irrespective of industry, is the same: to boost the speed with which you can respond to market changes and evolving business needs; to enhance your ability to embrace and adapt to new technology, and to improve overall security. As businesses realize that the underlying benefit of cloud adoption and enhanced virtualization isn't simply about cost savings, digital strategies are evolving, becoming more intelligent and successful in the process. Network virtualization is also a path toward the smooth digital transformation of any business. How does virtualization help in accelerating digital transformation? Combining public and private clouds, involving hardware-based computing, storage, and networking software definition. A hyper-converged infrastructure that integrates unified management with virtualized computing, storage, and networking could be included. Creating a platform for greater productivity by providing the apps and services consumers require when and when they utilize them. This should include simplifying application access and administration as well as unifying endpoint management. Improving network security and enhancing security flexibility to guarantee that quicker speed to market is matched by tighter security. Virtualization will also help businesses to move more quickly and safely, bringing products—and profits—to market faster. Enhancing Security with Network Virtualization Security has evolved as an essential component of every network architecture. However, since various areas of the network are often segregated from one another, it might be challenging for network teams to design and enforce network virtualization security standards that apply to the whole network. Zero trust can integrate such network parts and their accompanying virtualization activities. Throughout the network, the zero-trust architecture depends on the user and device authentication. If LAN users wish to access data center resources, they must first be authenticated. The secure connection required for endpoints to interact safely is provided by a zero-trust environment paired with network virtualization. To facilitate these interactions, virtual networks can be ramped up and down while retaining the appropriate degree of traffic segmentation. Access policies, which govern which devices can connect with one another, are a key part of this process. If a device is allowed to access a data center resource, the policy should be understood at both the WAN and campus levels. Some of the core network virtualization security features are: Isolation and multitenancy are critical features of network virtualization. Segmentation is related to isolation; however it is utilized in a multitier virtual network. A network virtualization platform's foundation includes firewalling technologies that enable segmentation inside virtual networks. Network virtualization enables automatic provisioning and context-sharing across virtual and physical security systems. Investigating the Role of Virtualization in Cloud Computing Virtualization in the cloud computing domain refers to the development of virtual resources (such as a virtual server, virtual storage device, virtual network switch, or even a virtual operating system) from a single resource of its type that also shows up as several personal isolated resources or environments that users can use as a separate individual physical resource. Virtualization enables the benefits of cloud computing, such as ease of scaling up, security, fluid or flexible resources, and so on. If another server is necessary, a virtual server will be immediately created, and a new server will be deployed. When we need more memory, we increase the virtual server configurations we currently have, and we now have the extra RAM we need. As a result, virtualization is the underlying technology of the cloud computing business model. The Benefits of Virtualization in Cloud Computing: Efficient hardware utilization Virtualization improves availability Disaster recovery is quick and simple Energy is saved by virtualization Setup is quick and simple Cloud migration has become simple Motivating Factors for the Adoption of Network Virtualization Demand for enterprise networks continues to climb, owing to rising end-user demands and the proliferation of devices and business software. Thanks to network virtualization, IT companies are gaining the ability to respond to shifting demands and match their networking capabilities with their virtualized storage and computing resources. In fact, according to a recent SDxCentral report, 88% of respondents believe it is "important" or "mission critical" to implement a network virtualization software over the next two to five years. Virtualization is also an excellent alternative for businesses that employ outsourced IT services, are planning mergers or acquisitions or must segregate IT teams owing to regulatory compliance. Reasons to Adopt Network Virtualization: A Business Needs Speed Security Requirements Are Rising Apps can Move Around Micro-segmentation IT Automation and Orchestration Reduce Hardware Dependency and CapEx: Adopt Multi-Tenancy Cloud Disaster Recovery mproved Scalability Wrapping-Up Network virtualization and cloud computing are emerging technologies of the future. As CIOs get actively involved in organizational systems, these new concepts will be implemented in more businesses. As consumer demand for real-time services expands, businesses will be driven to explore network virtualization as the best way to take their networks to the next level. The networking future is here. FAQ Why is network virtualization important for business? By integrating their current network gear into a single virtual network, businesses can reduce operating expenses, automate network and security processes, and set the stage for future growth. Where is network virtualization used? Network virtualization can be utilized in application development and testing to simulate hardware and system software realistically. Network virtualization in application performance engineering allows for the modeling of connections among applications, services, dependencies, and end users for software testing. How does virtualization work in cloud computing? Virtualization, in short, enables cloud providers to provide users alongside existing physical computer infrastructure. As a simple and direct process, it allows cloud customers to buy only the computing resources they require when they want them and to maintain those resources cost-effectively as the demand grows.

Read More
Virtual Desktop Tools, Server Hypervisors

VM Applications for Software Development and Secure Testing

Article | June 8, 2023

Contents 1. Introduction 2. Software Development and Secure Testing 3. Using VMs in Software Development and Secure Testing 4. Conclusion 1. Introduction “Testing is an infinite process of comparing the invisible to the ambiguous in order to avoid the unthinkable happening to the anonymous.” —James Bach. Testing software is crucial for identifying and fixing security vulnerabilities. However, meeting quality standards for functionality and performance does not guarantee security. Thus, software testing nowadays is a must to identify and address application security vulnerabilities to maintain the following: Security of data history, databases, information, and servers Customers’ integrity and trust Web application protection from future attacks VMs provide a flexible and isolated environment for software development and security testing. They offer easy replication of complex configurations and testing scenarios, allowing efficient issue resolution. VMs also provide secure testing by isolating applications from the host system and enabling a reset to a previous state. In addition, they facilitate DevOps practices and streamline the development workflow. 2. Software Development and Secure Testing Software Secure Testing: The Approach The following approaches must be considered while preparing and planning for security tests: Architecture Study and Analysis: Understand whether the software meets the necessary requirements. Threat Classification: List all potential threats and risk factors that must be tested. Test Planning: Run the tests based on the identified threats, vulnerabilities, and security risks. Testing Tool Identification: For software security testing tools for web applications, the developer must identify the relevant security tools to test the software for specific use cases. Test-Case Execution: After performing a security test, the developer should fix it using any suitable open-source code or manually. Reports: Prepare a detailed test report of the security tests performed, containing a list of the vulnerabilities, threats, and issues resolved and the ones that are still pending. Ensuring the security of an application that handles essential functions is paramount. This may involve safeguarding databases against malicious attacks or implementing fraud detection mechanisms for incoming leads before integrating them into the platform. Maintaining security is crucial throughout the software development life cycle (SDLC) and must be at the forefront of developers' minds while executing the software's requirements. With consistent effort, the SDLC pipeline addresses security issues before deployment, reducing the risk of discovering application vulnerabilities while minimizing the damage they could cause. A secure SDLC makes developers responsible for critical security. Developers need to be aware of potential security concerns at each step of the process. This requires integrating security into the SDLC in ways that were not needed before. As anyone can potentially access source code, coding with potential vulnerabilities in mind is essential. As such, having a robust and secure SDLC process is critical to ensuring applications are not subject to attacks by hackers. 3. Using VMs in Software Development and Secure Testing: Snapshotting: Snapshotting allows developers to capture a VM's state at a specific point in time and restore it later. This feature is helpful for debugging and enables developers to roll back to a previous state when an error occurs. A virtual machine provides several operations for creating and managing snapshots and snapshot chains. These operations let users create snapshots, revert to any snapshots in the chain, and remove snapshots. In addition, extensive snapshot trees can be created to streamline the flow. Virtual Networking: It allows virtual machines to be connected to virtual networks that simulate complex network topologies, allowing developers to test their applications in different network environments. This allows expanding data centers to cover multiple physical locations, gaining access to a plethora of more efficient options. This empowers them to effortlessly modify the network as per changing requirements without any additional hardware. Moreover, providing the network for specific applications and needs offers greater flexibility. Additionally, it enables workloads to be moved seamlessly across the network infrastructure without compromising on service, security, or availability. Resource Allocation: VMs can be configured with specific resource allocations such as CPU, RAM, and storage, allowing developers to test their applications under different resource constraints. Maintaining a 1:1 ratio between the virtual machine processor and its host or core is highly recommended. It's crucial to refrain from over-subscribing virtual machine processors to a single core, as this could lead to stalled or delayed events, causing significant frustration and dissatisfaction among users. However, it is essential to acknowledge that IT administrators sometimes overallocate virtual machine processors. In such cases, a practical approach is to start with a 2:1 ratio and gradually move towards 4:1, 8:1, 12:1, and so on while bringing virtual allocation into IT infrastructure. This approach ensures a safe and seamless transition towards optimized virtual resource allocation. Containerization within VMs: Containerization within VMs provides an additional layer of isolation and security for applications. Enterprises are finding new use cases for VMs to utilize their in-house and cloud infrastructure to support heavy-duty application and networking workloads. This will also have a positive impact on the environment. DevOps teams use containerization with virtualization to improve software development flexibility. Containers allow multiple apps to run in one container with the necessary components, such as code, system tools, and libraries. For complex applications, both virtual machines and containers are used together. However, while containers are used for the front-end and middleware, VMs are used for the back-end. VM Templates: VM templates are pre-configured virtual machines that can be used as a base for creating new virtual machines, making it easier to set up development and testing environments. A VM template is an image of a virtual machine that serves as a master copy. It includes VM disks, virtual devices, and settings. By using a VM template, cloning a virtual machine multiple times can be achieved. When you clone a VM from a template, the clones are independent and not linked to the template. VM templates are handy when a large number of similar VMs need to be deployed. They preserve VM consistency. To edit a template, convert it to a VM, make the necessary changes, and then convert the edited VM back into a new template. Remote Access: VMs can be accessed remotely, allowing developers and testers to collaborate more effectively from anywhere worldwide. To manage a virtual machine, follow these steps: enable remote access, connect to the virtual machine, and then access the VNC or serial console. Once connected, full permission to manage the virtual machine is granted with the user's approval. Remote access provides a secure way to access VMs, as connections can be encrypted and authenticated to prevent unauthorized access. Additionally, remote access allows for easier management of VMs, as administrators can monitor and control virtual machines from a central location. DevOps Integration: DevOps is a collection of practices, principles, and tools that allow a team to release software quickly and efficiently. Virtualization is vital in DevOps when developing intricate cloud, API, and SOA systems. Virtual machines enable teams to simulate environments for creating, testing, and launching code, ultimately preserving computing resources. While commencing a bug search at the API layer, teams find that virtual machines are suitable for test-driven development (TDD). Virtualization providers handle updates, freeing up DevOps teams, to focus on other areas and increasing productivity by 50 –60%. In addition, VMs allow for simultaneous testing of multiple release and patch levels, improving product compatibility and interoperability. 4. Conclusion The outlook for virtual machine applications is highly promising in the development and testing fields. With the increasing complexity of development and testing processes, VMs can significantly simplify and streamline these operations. In the future, VMs are expected to become even more versatile and potent, providing developers and testers with a broader range of tools and capabilities to facilitate the development process. One potential future development is integrating machine learning and artificial intelligence into VMs. This would enable VMs to automate various tasks, optimize the allocation of resources, and generate recommendations based on performance data. Moreover, VMs may become more agile and lightweight, allowing developers and testers to spin up and spin down instances with greater efficiency. The future of VM applications for software development and security testing looks bright, with continued innovation and development expected to provide developers and testers with even more powerful and flexible tools to improve the software development process.

Read More
Virtual Desktop Strategies, Server Hypervisors

Efficient Management of Virtual Machines using Orchestration

Article | April 27, 2023

Contents 1. Introduction 2. What is Orchestration? 3. How Orchestrating Help Optimize VMs Efficiency? 3.1. Resource Optimization 3.2 Dynamic Scaling 3.3 Faster Deployment 3.4 Improved Security 3.5 Multi-Cloud Management 3.6 Improved Collaboration 4. Considerations while Orchestrating VMs 4.1. Together Hosting of Containers and VMs 4.2 Automated Backup and Restore for VMs 4.3 Ensure Replication for VMs 4.4 Setup Data Synchronization for VMs 5. Conclusion 1. Introduction Orchestration is a superset of automation. Cloud orchestration goes beyond automation, providing coordination between multiple automated activities. Cloud orchestration is increasingly essential due to the growth of containerization, which facilitates scaling applications across clouds, both public and private. The demand for both public cloud orchestration and hybrid cloud orchestration has increased as businesses increasingly adopt a hybrid cloud architecture. The quick adoption of containerized, micro-services-based apps that communicate over APIs has fueled the desire for automation in deploying and managing applications across the cloud. This increase in complexity has created a need for VM orchestration that can manage numerous dependencies across various clouds with policy-driven security and management capabilities. 2. What is Orchestration? Orchestration refers to the process of automating, coordinating, and managing complex systems, workflows, or processes. It typically entails the use of automation tools and platforms to streamline and coordinate the deployment, configuration, management of applications and services across different environments. This includes development, testing, staging, and production. Orchestration tools in cloud computing can be used to automate the deployment and administration of containerized applications across multiple servers or clusters. These tools can help automate tasks such as container provisioning, scaling, load balancing, and health monitoring, making it easier to manage complex application environments. Orchestration ensures organizations automate and streamline their workflows, reduce errors and downtime, and improve the efficacy and scalability of their operations. 3. How Orchestrating Help Optimize VMs Efficiency? Orchestration offers enhanced visibility into the resources and processes in use, which helps prevent VM sprawl and helps organizations trace resource usage by department, business unit, or individual user. Fig. Global Market for VNFO by Virtualization Methodology 2022-27($ million) (Source: Insight Research) The above figure shows, VMs have established a solid legacy that will continue to be relevant in the near to mid-term future. These are 6 ways, in which Orchestration helps vin efficient management of VMs: 3.1. Resource Optimization Orchestrating helps optimize resource utilization by automating the provisioning and de-provisioning of VMs, which allows for efficient use of computing resources. By using orchestration tools, IT teams can set up rules and policies for automatically scaling VMs based on criteria such as CPU utilization, memory usage, network traffic, and application performance metrics. Orchestration also enables advanced techniques such as predictive analytics, machine learning, and artificial intelligence to optimize resource utilization. These technologies can analyze historical data and identify patterns in workload demand, allowing the orchestration system to predict future resource needs and automatically provision or de-provision resources accordingly 3.2. Dynamic Scaling Orchestrating helps automate scaling of VMs, enabling organizations to quickly and easily adjust their computing resources based on demand. It enables IT teams to configure scaling policies and regulations for virtual machines based on resource utilization and network traffic along with performance metrics. When the workload demand exceeds a certain threshold, the orchestration system can autonomously provision additional virtual machines to accommodate the increased load. When workload demand decreases, the orchestration system can deprovision VMs to free up resources and reduce costs. 3.3. Faster Deployment Orchestrating can help automate VM deployment of VMs, reducing the time and effort required to provision new resources. By leveraging advanced technologies such as automation, scripting, and APIs, orchestration can further streamline the VM deployment process. It allows IT teams to define workflows and processes that can be automated using scripts, reducing the time and effort required to deploy new resources. In addition, orchestration can integrate with other IT management tools and platforms, such as cloud management platforms, configuration management tools, and monitoring systems. This enables IT teams to leverage various capabilities and services to streamline the VM deployment and improve efficiency. 3.4. Improved Security Orchestrating can help enhance the security of VMs by automating the deployment of security patches and updates. It also helps ensure VMs are deployed with the appropriate security configurations and settings, reducing the risk of misconfiguration and vulnerability. It enables IT teams to define standard security templates and configurations for VMs, which can be automatically applied during deployment. Furthermore, orchestration can integrate with other security tools and platforms, such as intrusion detection systems and firewalls, to provide a comprehensive security solution. It allows IT teams to automate the deployment of security policies and rules, ensuring that workloads remain protected against various security threats. 3.5. Multi-Cloud Management Orchestration helps provide a single pane of glass for VM management, enabling IT teams to monitor and manage VMs across multiple cloud environments from a single platform. This simplifies management and reduces complexity, enabling IT teams to respond more quickly and effectively to changing business requirements. In addition, orchestration also helps to ensure consistency and compliance across multiple cloud environments. Moreover, orchestration can also integrate with other multi-cloud management tools and platforms, such as cloud brokers and cloud management platforms, to provide a comprehensive solution for managing VMs across multiple clouds. 3.6. Improved Collaboration Orchestration helps streamline collaboration by providing a centralized repository for storing and sharing information related to VMs. Moreover, it also automates many of the routine tasks associated with VM management, reducing the workload for IT teams and freeing up time for more complex tasks. This can improve collaboration by enabling IT teams to focus on more strategic initiatives. In addition, orchestration provides advanced analytics and reporting capabilities, enabling IT teams to track performance, identify bottlenecks, and optimize resource utilization. This improves performance by providing a data-driven approach to VM management and allowing IT teams to work collaboratively to identify and address performance issues. 4. Considerations while Orchestrating VMs 4.1. Together Hosting of Containers and VMs Containers and virtual machines exist together within a single infrastructure and are managed by the same platform. This allows for hosting various projects using a unified management point and the ability to adapt gradually based on current needs and opportunities. This provides greater flexibility for teams to host and administer applications using cutting-edge technologies and established standards and methods. Moreover, as there is no need to invest in distinct physical servers for virtual machines (VMs) and containers, this approach can be a great way to maximize infrastructure utilization, resulting in lower TCO and higher ROI. In addition, unified management drastically simplifies processes, requiring fewer human resources and less time. 4.2. Automated Backup and Restore for VMs --Minimize downtime and reduce risk of data loss Organizations should set up automated backup and restore processes for virtual machines, ensuring critical data and applications are protected during a disaster. This involves scheduling regular backups of virtual machines to a secondary location or cloud storage and setting up automated restore processes to recover virtual machines during an outage or disaster quickly. 4.3. Ensure Replication for VMs --Ensure data and applications are available and accessible in the event of a disaster Organizations should set up replication processes for their VMs, allowing them to be automatically copied to a secondary location or cloud infrastructure. This ensures that critical applications and data are available even during a catastrophic failure at the primary site. 4.4. Setup Data Synchronization for VMs --Improve overall resilience and availability of the system VM orchestration tools should be used to set up data synchronization processes between virtual machines, ensuring that data is consistent and up-to-date across multiple locations. This is particularly important in scenarios where data needs to be accessed quickly from various locations, such as in distributed environments. 5. Conclusion Orchestration provides disaster recovery and business continuity, automatic scalability of distributed systems, and inter-service configuration. Cloud orchestration is becoming significant due to the advent of containerization, which permits scaling applications across clouds, both public and private. We expect continued growth and innovation in the field of VM orchestration, with new technologies and tools emerging to support more efficient and effective management of virtual machines in distributed environments. In addition, as organizations increasingly rely on cloud-based infrastructures and distributed systems, VM orchestration will continue to play a vital role in enabling businesses to operate smoothly and recover quickly from disruptions. VM orchestration will remain a critical component of disaster recovery and high availability strategies for years as organizations continue relying on virtualization technologies to power their operations and drive innovation.

Read More
Virtual Desktop Tools

Rising Importance of Network Virtualization

Article | July 26, 2022

Network virtualization combines network resources to integrate several physical networks, segment a network, or construct software networks among VMs. IT teams can construct numerous separate virtual networks using network virtualization. Virtual networks can be added and scaled without changing hardware. Teams can start up logical networks more rapidly in response to business needs using network virtualization. This adaptability improves service delivery, efficiency, and control. Importance of Network Virtualisation Network virtualization entails developing new rules for the delivery of network services. This involves software-defined data centers (SDDC), cloud computing, and edge computing. Virtualization assists in the transformation of networks from rigid, wasteful, and static to optimized, agile, and dynamic. To ensure agility and speed, modern virtual networks must keep up with the needs of cloud-hosted, decentralized applications while addressing cyberthreats. You can deploy and upgrade programs in minutes thanks to network virtualization. This eliminates the need to spend time setting up the infrastructure to accommodate the new applications. What is the Process of Network Virtualization? Several network functions that were previously done manually on hardware are now automated through network virtualisation. Network managers can construct, maintain, and provide networks programmatically in software while employing the hardware as a packet-forwarding backplane. Physical network resources, such as virtual private networks (VPNs), load balancing, firewalling, routing, and switching, are pooled and supplied in software. To do this, you merely require Internet Protocol (IP) packet forwarding from the hardware or physical network. Individual workloads, such as virtual machines, can access network services that have been distributed to a virtual layer. There are several kinds of virtual machines accessible. The finest virtual machines enable network administrators to access all parts of a network from a single point of access. Closing Lines Network virtualization will remain a critical component in both business and carrier network architectures. Network virtualization projects in the future will inevitably incorporate zero trust, automation, and edge and cloud computing.

Read More

Spotlight

IP Infusion

IP Infusion (www.ipinfusion.com), the leader in disaggregated networking solutions, delivers the best network OS for white box and network virtualization. IP Infusion offers network operating systems for both physical and virtual networks to carriers, service providers and enterprises to achieve the disaggregated networking model.

Related News

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Backup and Disaster Recovery

Minimize the Cost and Downtime of Disaster With Scale Computing's Business Continuity/Disaster Recovery Planning Service

PR Newswire | October 25, 2023

Scale Computing, a market leader in edge computing, virtualization, and hyperconverged solutions, today announced its Business Continuity/Disaster Recovery (BCDR) Planning Service, designed to help organizations establish a comprehensive, regulated plan for responding to unforeseen downtime. The service provides Scale Computing customers and partners with the tools, guidance, and resources to create a playbook for data backup and recovery, enabling businesses to endure a disaster scenario with minimal loss. Scale Computing also recently announced that it is a finalist for the Business Continuity/Disaster Recovery Project of the Year in the 2023 SDC Awards for its work with Austrian managed service provider GiGaNet and its long-time partner the Zillertaler Gletscherbahn group. Voting for the SDC Awards is open at sdcawards.com/vote until November 10th, 2023. Data breaches are one of the biggest and most costly contributors to downtime for businesses. In 2023, the average cost of a data breach globally reached an all-time high of $4.45 million, a 15.3% increase from 2020. Simultaneously, the average length of business disruption following a ransomware attack in the United States reached 24 days last year, up 60% from just two years prior — a significant increase when downtime costs exceed $300,000 per hour for over 90% of mid-sized and large enterprises. For more than half of those businesses, the hourly outage costs range from $1 million to over $5 million. Recovery from an outage adds additional expense from which many enterprises are unable to bounce back. "Disaster can strike at any time, and every organization needs a consistently regulated playbook for how the business will respond — from action plans to recovery plans for bringing online the mission-critical servers businesses depend on," said Jeff Ready, CEO and co-founder, Scale Computing. "Knowing what systems need to be protected, planning for the ability to recover them, and having a full action plan for recovery should be at the forefront of every IT department's agenda, at the beginning of any infrastructure addition. With Scale Computing Platform, the plan for disaster recovery starts before equipment is even put into production, so IT leaders have a plan in place from day one that they can enact to ensure their business stays up and running, with minimal loss, should disaster strike. Our Business Continuity/Disaster Recovery Planning Service enables businesses to proactively classify systems based on their importance and implement a robust action plan, ensuring that our customers' and partners' critical systems are protected, validated, tested, and ready for recovery at any time." Whether a minor data loss or a business-wide shutdown, having a well-defined business continuity strategy is crucial to minimize financial impact, ensure continuous employee productivity, meet compliance and regulatory requirements, decrease liability obligations, reduce downtime, and minimize the risk of negative exposure. Scale Computing's BCDR Planning Service includes planning, deployment, documentation creation, and disaster recovery testing, covering every aspect to keep businesses prepared and resilient. The service is offered to Scale Computing Platform customers, which brings simplicity, high availability, and scalability together to replace existing infrastructure for running virtual machines with an easy-to-manage, fully integrated platform that allows organizations to run applications regardless of hardware requirements. About Scale Computing Scale Computing is a leader in edge computing, virtualization, and hyperconverged solutions. Using patented HyperCore™ technology, Scale Computing Platform automatically identifies, mitigates, and corrects infrastructure problems in real-time, enabling applications to achieve maximum uptime, even when local IT resources and staff are scarce. Edge Computing is the fastest-growing area of IT infrastructure, and industry analysts have named Scale Computing an outperformer and leader in the space, including being named the #1 edge computing vendor by CRN. Scale Computing's products are sold by thousands of value-added resellers, integrators, and service providers worldwide.

Read More

Server Virtualization, VMware

StorMagic Introduces Edge Control Software to Simplify SvSAN Monitoring and Management

Business Wire | October 18, 2023

StorMagic®, solving the world’s edge data problems, today announced the immediate availability of a new Software as a Service (SaaS) tool that allows users to easily monitor and manage all of their SvSAN clusters around the world. StorMagic Edge Control simplifies the process and tools required for day-to-day SvSAN cluster administration. SvSAN customers with multiple locations can significantly reduce the time spent managing their edge sites, whether they are using VMware, Microsoft or KVM hypervisors. “ESG research shows increasing demand for data storage at the edge which fuels an increased need for monitoring solutions that can help address the complexity of storage at the edge,” said Scott Sinclair, practice director at Enterprise Strategy Group. “SvSAN customers can greatly benefit by adding StorMagic Edge Control into their toolkits; the dashboard views and list formats will make centralized data management much easier and more accessible.” Edge Control delivers centralized administration for SvSAN environments of all sizes. Customers can now manage all SvSAN deployments in any location from a single pane of glass. Dashboard and system views provide a fast but comprehensive status of all of their virtual storage appliances (VSAs), allowing them to keep their environment up-to-date more easily and react faster as needed. “StorMagic customers of any size can now manage their entire SvSAN estate, whether it’s one site or thousands of sites around the world,” said Bruce Kornfeld, chief marketing and product officer, StorMagic. “Edge Control is particularly interesting for customers who are considering switching from VMware to Microsoft or Linux KVM because SvSAN and Edge Control are both hypervisor agnostic.” Pricing and Availability Edge Control version 1.0 is available today from StorMagic. SvSAN customers can download and begin using the software immediately, free of charge. About StorMagic StorMagic is solving the world’s edge data problems. We help organizations store, protect and use data at and from the edge. StorMagic’s solutions ensure data is always protected and available, no matter the type or location, to provide value anytime, anywhere. StorMagic’s storage and security products are flexible, robust, easy to use and cost-effective, without sacrificing enterprise-class features, for organizations with one to thousands of sites.

Read More

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Backup and Disaster Recovery

Minimize the Cost and Downtime of Disaster With Scale Computing's Business Continuity/Disaster Recovery Planning Service

PR Newswire | October 25, 2023

Scale Computing, a market leader in edge computing, virtualization, and hyperconverged solutions, today announced its Business Continuity/Disaster Recovery (BCDR) Planning Service, designed to help organizations establish a comprehensive, regulated plan for responding to unforeseen downtime. The service provides Scale Computing customers and partners with the tools, guidance, and resources to create a playbook for data backup and recovery, enabling businesses to endure a disaster scenario with minimal loss. Scale Computing also recently announced that it is a finalist for the Business Continuity/Disaster Recovery Project of the Year in the 2023 SDC Awards for its work with Austrian managed service provider GiGaNet and its long-time partner the Zillertaler Gletscherbahn group. Voting for the SDC Awards is open at sdcawards.com/vote until November 10th, 2023. Data breaches are one of the biggest and most costly contributors to downtime for businesses. In 2023, the average cost of a data breach globally reached an all-time high of $4.45 million, a 15.3% increase from 2020. Simultaneously, the average length of business disruption following a ransomware attack in the United States reached 24 days last year, up 60% from just two years prior — a significant increase when downtime costs exceed $300,000 per hour for over 90% of mid-sized and large enterprises. For more than half of those businesses, the hourly outage costs range from $1 million to over $5 million. Recovery from an outage adds additional expense from which many enterprises are unable to bounce back. "Disaster can strike at any time, and every organization needs a consistently regulated playbook for how the business will respond — from action plans to recovery plans for bringing online the mission-critical servers businesses depend on," said Jeff Ready, CEO and co-founder, Scale Computing. "Knowing what systems need to be protected, planning for the ability to recover them, and having a full action plan for recovery should be at the forefront of every IT department's agenda, at the beginning of any infrastructure addition. With Scale Computing Platform, the plan for disaster recovery starts before equipment is even put into production, so IT leaders have a plan in place from day one that they can enact to ensure their business stays up and running, with minimal loss, should disaster strike. Our Business Continuity/Disaster Recovery Planning Service enables businesses to proactively classify systems based on their importance and implement a robust action plan, ensuring that our customers' and partners' critical systems are protected, validated, tested, and ready for recovery at any time." Whether a minor data loss or a business-wide shutdown, having a well-defined business continuity strategy is crucial to minimize financial impact, ensure continuous employee productivity, meet compliance and regulatory requirements, decrease liability obligations, reduce downtime, and minimize the risk of negative exposure. Scale Computing's BCDR Planning Service includes planning, deployment, documentation creation, and disaster recovery testing, covering every aspect to keep businesses prepared and resilient. The service is offered to Scale Computing Platform customers, which brings simplicity, high availability, and scalability together to replace existing infrastructure for running virtual machines with an easy-to-manage, fully integrated platform that allows organizations to run applications regardless of hardware requirements. About Scale Computing Scale Computing is a leader in edge computing, virtualization, and hyperconverged solutions. Using patented HyperCore™ technology, Scale Computing Platform automatically identifies, mitigates, and corrects infrastructure problems in real-time, enabling applications to achieve maximum uptime, even when local IT resources and staff are scarce. Edge Computing is the fastest-growing area of IT infrastructure, and industry analysts have named Scale Computing an outperformer and leader in the space, including being named the #1 edge computing vendor by CRN. Scale Computing's products are sold by thousands of value-added resellers, integrators, and service providers worldwide.

Read More

Server Virtualization, VMware

StorMagic Introduces Edge Control Software to Simplify SvSAN Monitoring and Management

Business Wire | October 18, 2023

StorMagic®, solving the world’s edge data problems, today announced the immediate availability of a new Software as a Service (SaaS) tool that allows users to easily monitor and manage all of their SvSAN clusters around the world. StorMagic Edge Control simplifies the process and tools required for day-to-day SvSAN cluster administration. SvSAN customers with multiple locations can significantly reduce the time spent managing their edge sites, whether they are using VMware, Microsoft or KVM hypervisors. “ESG research shows increasing demand for data storage at the edge which fuels an increased need for monitoring solutions that can help address the complexity of storage at the edge,” said Scott Sinclair, practice director at Enterprise Strategy Group. “SvSAN customers can greatly benefit by adding StorMagic Edge Control into their toolkits; the dashboard views and list formats will make centralized data management much easier and more accessible.” Edge Control delivers centralized administration for SvSAN environments of all sizes. Customers can now manage all SvSAN deployments in any location from a single pane of glass. Dashboard and system views provide a fast but comprehensive status of all of their virtual storage appliances (VSAs), allowing them to keep their environment up-to-date more easily and react faster as needed. “StorMagic customers of any size can now manage their entire SvSAN estate, whether it’s one site or thousands of sites around the world,” said Bruce Kornfeld, chief marketing and product officer, StorMagic. “Edge Control is particularly interesting for customers who are considering switching from VMware to Microsoft or Linux KVM because SvSAN and Edge Control are both hypervisor agnostic.” Pricing and Availability Edge Control version 1.0 is available today from StorMagic. SvSAN customers can download and begin using the software immediately, free of charge. About StorMagic StorMagic is solving the world’s edge data problems. We help organizations store, protect and use data at and from the edge. StorMagic’s solutions ensure data is always protected and available, no matter the type or location, to provide value anytime, anywhere. StorMagic’s storage and security products are flexible, robust, easy to use and cost-effective, without sacrificing enterprise-class features, for organizations with one to thousands of sites.

Read More

Events