C RAN Ecosystem Industry Study Offering Deep Insight Related to Growth

Global C-RAN Ecosystem Market valued approximately USD 9.2 billion in 2017 is anticipated to grow with a healthy growth rate of more than 24.13% over the forecast period 2018-2025. The C-RAN Ecosystem Market is continuously growing in the global scenario over the coming years. Centralized RAN or C-RAN is an architectural shift in RAN (Radio Access Network) design, where the bulk of baseband processing is centralized and aggregated for a large number of distributed radio nodes. The advent of the 5G network, the requirement for cost and energy efficient network architecture are the substantial drivers of the market across the globe. Moreover, Bringing intelligence to the mobile edge computing which is likely to create a lucrative opportunity in the near future. Additionally, C-RAN provides significant performance and economic benefits such as baseband pooling, enhanced coordination between cells, virtualization, network extensibility.

Spotlight

Genatec

Genatec is a well-established, successful Canadian IT (Information Technology) consulting and business solutions company, fuelled by a team of highly skilled professionals who are trained to be “at your service” and thinking proactively about your future, from the minute you hire us and throughout your ongoing success.

OTHER ARTICLES
Virtual Desktop Tools

Virtual Machine Security Risks and Mitigation in Cloud Computing

Article | August 12, 2022

Analyzing risks and implementing advanced mitigation strategies: Safeguard critical data, fortify defenses, and stay ahead of emerging threats in the dynamic realm of virtual machines in cloud. Contents 1. Introduction 2. 10 Security Risks Associated with Virtual Machines in Cloud Computing 3. Best Practices to Avoid Security Compromise 4. Conclusion 1. Introduction Cloud computing has revolutionized the way businesses operate by providing flexible, scalable, and cost-effective infrastructure for running applications and services. Virtual machines (VMs) are a key component of cloud computing, allowing multiple virtual machines to run on a single physical machine. However, the use of virtual machines in cloud computing introduces new security risks that need to be addressed to ensure the confidentiality, integrity, and availability of data and services. Effective VM security in the cloud requires a comprehensive approach that involves cloud providers and users working together to identify and address potential virtual machine security threats. By implementing these best practices and maintaining a focus on security, cloud computing can provide a secure and reliable platform for businesses to run their applications and services. 2. 10 Security Risks Associated with Virtual Machines in Cloud Computing Denial of Service (DoS) attacks: These are attacks that aim to disrupt the availability of a VM or the entire cloud infrastructure by overwhelming the system with traffic or resource requests. Insecure APIs: Cloud providers often expose APIs that allow users to manage their VMs. If these APIs are not properly secured, attackers can exploit them to gain unauthorized access to VMs or manipulate their configurations. Data leakage: Virtual machines can store sensitive data such as customer information or intellectual property. If not secured, this data can be exposed to unauthorized access or leakage. Shared resources: VMs in cloud environments often share physical resources such as memory, CPU, and network interfaces. If these resources are not isolated, a compromised VM can potentially affect the security and performance of other VMs running on the same physical host. Lack of visibility: Virtual machines in cloud environments can be more difficult to monitor than physical machines. This can make it harder to detect security incidents or anomalous behavior. Insufficient logging and auditing: If cloud providers do not implement appropriate logging and auditing mechanisms, it can be difficult to determine the cause and scope of a security incident. VM escape: This is when an attacker gains access to the hypervisor layer and then escapes into the host operating system or other VMs running on the same physical host. Side-channel attacks: This is when an attacker exploits the physical characteristics of the hardware to gain unauthorized access to a VM. Examples of side-channel attacks include timing attacks, power analysis attacks, and electromagnetic attacks. Malware attacks: VMs can be infected with malware, just like physical machines. Malware can be used to steal data, launch attacks on other VMs or systems, or disrupt the functioning of the VM. Insider threats: Malicious insiders can exploit their access to VMs to steal data, modify configurations, or launch attacks. 3. Best Practices to Avoid Security Compromise To mitigate these risks, there are several virtual machine security guidelines that cloud service providers and users can follow: Keep software up-to-date: Regularly updating software and security patches for virtual machines is crucial in preventing known vulnerabilities from being exploited by hackers. Software updates fix bugs and security flaws that could allow unauthorized access, data breaches, or malware attacks. According to a study, 60% of data breaches are caused by vulnerabilities that were not patched or updated in a timely manner.(Source: Ponemon Institute) Use secure hypervisors: A hypervisor is a software layer that enables multiple virtual machines to run on a single physical server. Secure hypervisors are designed to prevent unauthorized access to virtual machines and protect them from potential security threats. When choosing a hypervisor, it is important to select one that has undergone rigorous testing and meets industry standards for security. In 2018, a group of researchers discovered a new type of attack called "Foreshadow" (also known as L1 Terminal Fault). The attack exploits vulnerabilities in Intel processors and can be used to steal sensitive data from virtual machines running on the same physical host. Secure hypervisors that have implemented hardware-based security features can provide protection against Foreshadow and similar attacks. (Source: Foreshadow) Implement strong access controls: Access control is the practice of restricting access to virtual machines to authorized users. Multi-factor authentication adds an extra layer of security by requiring users to provide more than one type of authentication method before accessing VMs. Strong access controls limit the risk of unauthorized access and can help prevent data breaches. According to a survey, organizations that implemented multi-factor authentication saw a 98% reduction in the risk of phishing-related account breaches. (Source: Duo Security) Monitor VMs for anomalous behavior: Monitoring virtual machines for unusual or unexpected behavior is an essential security practice. This includes monitoring network traffic, processes running on the VM, and other metrics that can help detect potential security incidents. By monitoring VMs, security teams can detect and respond to security threats before they can cause damage. A study found that 90% of organizations that implemented a virtualized environment experienced security benefits, such as improved visibility into security threats and faster incident response times. (Source: VMware) Use Encryption: Encryption is the process of encoding information in such a way that only authorized parties can access it. Encrypting data both in transit and at rest protects it from interception or theft by hackers. This can be achieved using industry-standard encryption protocols and technologies. According to a report by, the average cost of a data breach in 2020 was $3.86 million. The report also found that organizations that implemented encryption had a lower average cost of a data breach compared to those that did not (Source: IBM) Segregate VMs: Segregating virtual machines is the practice of keeping sensitive VMs separate from less sensitive ones. This reduces the risk of lateral movement, which is when a hacker gains access to one VM and uses it as a stepping stone to gain access to other VMs in the same environment. Segregating VMs helps to minimize the risk of data breaches and limit the potential impact of a security incident. A study found that organizations that implemented a virtualized environment without adequate segregation and access controls were more vulnerable to VM security breaches and data loss. (Source: Ponemon Institute) Regularly Back-up VMs: Regularly backing up virtual machines is a critical security practice that can help mitigate the impact of malware attacks, system failures, or other security incidents. Backups should be stored securely and tested regularly to ensure that they can be restored quickly in the event of a security incident. A survey conducted found that 42% of organizations experienced a data loss event in 2020 with the most common cause being accidental deletion by an employee (29%). (Source: Veeam) 4. Conclusion The complexity of cloud environments and the shared responsibility model for security require organizations to adopt a comprehensive security approach that spans multiple infrastructure layers, from the physical to the application layer. The future of virtual machine security concern in cloud computing will require continued innovation and adaptation to new threats and vulnerabilities. As a result, organizations must remain vigilant and proactive in their security efforts, leveraging the latest technologies and best practices to protect their virtual machines, the sensitive data and resources they contain.

Read More
Server Virtualization

Network Virtualization: Gaining a Competitive Edge

Article | May 17, 2023

Network virtualization (NV) is the act of combining a network's physical hardware into a single virtual network. This is often accomplished by running several virtual guest computers in software containers on a single physical host system. Network virtualization is the gold standard for networking, and it is being adopted by enterprises of all kinds globally. By integrating their existing network gear into a single virtual network, enterprises can save operating expenses, automate network and security processes, and set the stage for future growth. Businesses can use virtualization to imitate many types of traditional hardware, including servers, storage devices, and network resources. Three Forces Driving Network Virtualization Demand for enterprise networks keeps rising, driven by higher end-user demands and the proliferation of devices and business software. Through network virtualization, IT businesses are gaining the ability to respond to evolving needs and match their networking capabilities with their virtualized storage and computing resources. According to a recent SDxCentral survey, 88% of respondents believe that adopting a network virtualization solution is "mission critical" and that it is necessary to assist IT in addressing the immediate requirements of flexibility, scalability, and cost savings (both OpEx and CapEx) in the data center. Speed Today, consider any business as an example. Everything depends on IT's capacity to assist business operations. When a company wants to 'surprise' its clients with a new app, launch a competitive offer, or pursue a fresh route to market, it requires immediate IT assistance. That implies IT must move considerably more swiftly, and networks must evolve at the rapid speed of a digitally enabled organization. Security According to a PricewaterhouseCoopers survey, the average organization experiences two successful cyberattacks every week. Perimeter security is just insufficient to stem the flood, and network experts are called upon to provide a better solution. The new data center security approach will: Be software-based Use the micro-segmentation principle Adopt a Zero Trust (ZT) paradigm In an ideal world, there would be no difference between trustworthy and untrusted networks or sectors, but a ZT model necessitates a network virtualization technology that allows micro-segmentation. Flexibility Thanks to the emergence of server virtualization, applications are no longer linked to a specific physical server in a single location. Applications can now be replicated to eliminate a data center for disaster recovery, moved through one corporate data center to another, or slipped into a hybrid cloud environment. The problem is that network setup is hardware-dependent, and hardwired networking connections restrict them. Because networking services vary significantly from one data center to the next, as an in-house data center differs from a cloud, you must perform extensive personalization to make your applications work in different network environments—a significant barrier to app mobility and another compelling reason to utilize network virtualization. Closing Lines Network virtualization is indeed the future technology. These network virtualization platform characteristics benefit more companies as CIOs get more involved in organizational processes. As consumer demand for real-time solutions develops, businesses will be forced to explore network virtualization as the best way to take their networks to another level.

Read More
Server Hypervisors

VM Applications for Software Development and Secure Testing

Article | September 9, 2022

Contents 1. Introduction 2. Software Development and Secure Testing 3. Using VMs in Software Development and Secure Testing 4. Conclusion 1. Introduction “Testing is an infinite process of comparing the invisible to the ambiguous in order to avoid the unthinkable happening to the anonymous.” —James Bach. Testing software is crucial for identifying and fixing security vulnerabilities. However, meeting quality standards for functionality and performance does not guarantee security. Thus, software testing nowadays is a must to identify and address application security vulnerabilities to maintain the following: Security of data history, databases, information, and servers Customers’ integrity and trust Web application protection from future attacks VMs provide a flexible and isolated environment for software development and security testing. They offer easy replication of complex configurations and testing scenarios, allowing efficient issue resolution. VMs also provide secure testing by isolating applications from the host system and enabling a reset to a previous state. In addition, they facilitate DevOps practices and streamline the development workflow. 2. Software Development and Secure Testing Software Secure Testing: The Approach The following approaches must be considered while preparing and planning for security tests: Architecture Study and Analysis: Understand whether the software meets the necessary requirements. Threat Classification: List all potential threats and risk factors that must be tested. Test Planning: Run the tests based on the identified threats, vulnerabilities, and security risks. Testing Tool Identification: For software security testing tools for web applications, the developer must identify the relevant security tools to test the software for specific use cases. Test-Case Execution: After performing a security test, the developer should fix it using any suitable open-source code or manually. Reports: Prepare a detailed test report of the security tests performed, containing a list of the vulnerabilities, threats, and issues resolved and the ones that are still pending. Ensuring the security of an application that handles essential functions is paramount. This may involve safeguarding databases against malicious attacks or implementing fraud detection mechanisms for incoming leads before integrating them into the platform. Maintaining security is crucial throughout the software development life cycle (SDLC) and must be at the forefront of developers' minds while executing the software's requirements. With consistent effort, the SDLC pipeline addresses security issues before deployment, reducing the risk of discovering application vulnerabilities while minimizing the damage they could cause. A secure SDLC makes developers responsible for critical security. Developers need to be aware of potential security concerns at each step of the process. This requires integrating security into the SDLC in ways that were not needed before. As anyone can potentially access source code, coding with potential vulnerabilities in mind is essential. As such, having a robust and secure SDLC process is critical to ensuring applications are not subject to attacks by hackers. 3. Using VMs in Software Development and Secure Testing: Snapshotting: Snapshotting allows developers to capture a VM's state at a specific point in time and restore it later. This feature is helpful for debugging and enables developers to roll back to a previous state when an error occurs. A virtual machine provides several operations for creating and managing snapshots and snapshot chains. These operations let users create snapshots, revert to any snapshots in the chain, and remove snapshots. In addition, extensive snapshot trees can be created to streamline the flow. Virtual Networking: It allows virtual machines to be connected to virtual networks that simulate complex network topologies, allowing developers to test their applications in different network environments. This allows expanding data centers to cover multiple physical locations, gaining access to a plethora of more efficient options. This empowers them to effortlessly modify the network as per changing requirements without any additional hardware. Moreover, providing the network for specific applications and needs offers greater flexibility. Additionally, it enables workloads to be moved seamlessly across the network infrastructure without compromising on service, security, or availability. Resource Allocation: VMs can be configured with specific resource allocations such as CPU, RAM, and storage, allowing developers to test their applications under different resource constraints. Maintaining a 1:1 ratio between the virtual machine processor and its host or core is highly recommended. It's crucial to refrain from over-subscribing virtual machine processors to a single core, as this could lead to stalled or delayed events, causing significant frustration and dissatisfaction among users. However, it is essential to acknowledge that IT administrators sometimes overallocate virtual machine processors. In such cases, a practical approach is to start with a 2:1 ratio and gradually move towards 4:1, 8:1, 12:1, and so on while bringing virtual allocation into IT infrastructure. This approach ensures a safe and seamless transition towards optimized virtual resource allocation. Containerization within VMs: Containerization within VMs provides an additional layer of isolation and security for applications. Enterprises are finding new use cases for VMs to utilize their in-house and cloud infrastructure to support heavy-duty application and networking workloads. This will also have a positive impact on the environment. DevOps teams use containerization with virtualization to improve software development flexibility. Containers allow multiple apps to run in one container with the necessary components, such as code, system tools, and libraries. For complex applications, both virtual machines and containers are used together. However, while containers are used for the front-end and middleware, VMs are used for the back-end. VM Templates: VM templates are pre-configured virtual machines that can be used as a base for creating new virtual machines, making it easier to set up development and testing environments. A VM template is an image of a virtual machine that serves as a master copy. It includes VM disks, virtual devices, and settings. By using a VM template, cloning a virtual machine multiple times can be achieved. When you clone a VM from a template, the clones are independent and not linked to the template. VM templates are handy when a large number of similar VMs need to be deployed. They preserve VM consistency. To edit a template, convert it to a VM, make the necessary changes, and then convert the edited VM back into a new template. Remote Access: VMs can be accessed remotely, allowing developers and testers to collaborate more effectively from anywhere worldwide. To manage a virtual machine, follow these steps: enable remote access, connect to the virtual machine, and then access the VNC or serial console. Once connected, full permission to manage the virtual machine is granted with the user's approval. Remote access provides a secure way to access VMs, as connections can be encrypted and authenticated to prevent unauthorized access. Additionally, remote access allows for easier management of VMs, as administrators can monitor and control virtual machines from a central location. DevOps Integration: DevOps is a collection of practices, principles, and tools that allow a team to release software quickly and efficiently. Virtualization is vital in DevOps when developing intricate cloud, API, and SOA systems. Virtual machines enable teams to simulate environments for creating, testing, and launching code, ultimately preserving computing resources. While commencing a bug search at the API layer, teams find that virtual machines are suitable for test-driven development (TDD). Virtualization providers handle updates, freeing up DevOps teams, to focus on other areas and increasing productivity by 50 –60%. In addition, VMs allow for simultaneous testing of multiple release and patch levels, improving product compatibility and interoperability. 4. Conclusion The outlook for virtual machine applications is highly promising in the development and testing fields. With the increasing complexity of development and testing processes, VMs can significantly simplify and streamline these operations. In the future, VMs are expected to become even more versatile and potent, providing developers and testers with a broader range of tools and capabilities to facilitate the development process. One potential future development is integrating machine learning and artificial intelligence into VMs. This would enable VMs to automate various tasks, optimize the allocation of resources, and generate recommendations based on performance data. Moreover, VMs may become more agile and lightweight, allowing developers and testers to spin up and spin down instances with greater efficiency. The future of VM applications for software development and security testing looks bright, with continued innovation and development expected to provide developers and testers with even more powerful and flexible tools to improve the software development process.

Read More
Virtual Desktop Tools

Managing Multi-Cloud Complexities for a Seamless Experience

Article | July 7, 2022

Introduction The early 2000s were milestone moments for the cloud. Amazon Web Services (AWS) entered the market in 2006, while Google revealed its first cloud service in 2007. Fast forward to 2020, when the pandemic boosted digital transformation efforts by around seven years (according to McKinsey), and the cloud has become a commercial necessity today. It not only facilitated the swift transition to remote work, but it also remains critical in maintaining company sustainability and creativity. Many can argue that the large-scale transition to the cloud in the 2010s was necessary to enable the digital-first experiences that remote workers and decentralized businesses need today. Multi-cloud and hybrid cloud setups are now the norm. According to Gartner, most businesses today use a multi-cloud approach to reduce vendor lock-in or to take advantage of more flexible, best-of-breed solutions. However, managing multi-cloud systems increases cloud complexity, and IT concerns, frequently slowing rather than accelerating innovation. According to 2022 research done by IntelligentCIO, the average multi-cloud system includes five platforms, including AWS, Microsoft Azure, Google Cloud, and IBM Red Hat, among others. Managing Multi-Cloud Complexities Like a Pro Your multi-cloud strategy should satisfy your company's requirements while also laying the groundwork for managing various cloud deployments. Creating a proactive plan for managing multi-cloud setups is one of the finest features that can distinguish your company. The five strategies for handling multi-cloud complexity are outlined below. Managing Data with AI and ML AI and machine learning can help manage enormous quantities of data in multi-cloud environments. AI simulates human decision-making and performs tasks as well as humans or even better at times. Machine learning is a type of artificial intelligence that learns from data, recognizes patterns, and makes decisions with minimum human interaction. AI and ML to help discover the most important data, reducing big data and multi-cloud complexity. AI and machine learning enable more simplicity and better data control. Integrated Management Structure Keeping up with the growing number of cloud services from several providers requires a unified management structure. Multiple cloud management requires IT time, resources, and technology to juggle and correlate infrastructure alternatives. Routinely monitor your cloud resources and service settings. It's important to manage apps, clouds, and people globally. Ensure you have the technology and infrastructure to handle several clouds. Developing Security Strategy Operating multiple clouds requires a security strategy and seamless integration of security capabilities. There's no single right answer since vendors have varied policies and cybersecurity methods. Storing data on many cloud deployments prevents data loss. Handling backups and safety copies of your data are crucial. Regularly examine your multi-cloud network's security. The cyber threat environment will vary as infrastructure and software do. Multi-cloud strategies must safeguard data and applications. Skillset Management Multi-cloud complexity requires skilled operators. Do you have the appropriate IT personnel to handle multi-cloud? If not, can you use managed or cloud services? These individuals or people are in charge of teaching the organization about how each cloud deployment helps the company accomplish its goals. This specialist ensures all cloud entities work properly by utilizing cloud technologies. Closing Lines Traditional cloud monitoring solutions are incapable of dealing with dynamic multi-cloud setups, but automated intelligence is the best at getting to the heart of cloud performance and security concerns. To begin with, businesses require end-to-end observability in order to see the overall picture. Add automation and causal AI to this capacity, and teams can obtain the accurate answers they require to better optimize their environments, freeing them up to concentrate on increasing innovation and generating better business results.

Read More

Spotlight

Genatec

Genatec is a well-established, successful Canadian IT (Information Technology) consulting and business solutions company, fuelled by a team of highly skilled professionals who are trained to be “at your service” and thinking proactively about your future, from the minute you hire us and throughout your ongoing success.

Related News

GDPR and beyond The past, present and future of data privacy

siliconangle.com | July 08, 2019

There is a GDPR framework,Venkatraman explained. You start by classifying data. Then you apply specific policies to ensure you protect and back up the personal data. And then you go about meeting the specific requirements.GDPR has changed the data game, putting security and privacy on the front page, as well as on the boardroom agenda. IDC research has shown that data protection is a key influencer in IT investment decisions, with companies asking, How do I become data driven without compromising on security and sovereignty and data locality? Venkatraman stated. Actifios copy data virtualization can help companies achieve that goal, giving them the potential for a successful future, according to Venkatraman. Companies are moving from protecting data centers to protecting centers of data,Venkatraman predicted. If Actifio can help organizations protect multiple centers of data through a unified pane of glass and have that platform approach to data management, then they can help organizations become data thrivers, which gives them the competitive advantage.

Read More

IP Multimedia Subsystem (IMS) Services Market 2019 Dynamics, Comprehensive Analysis, Business Growth

worldanalytics24.com | July 08, 2019

The report provides an overview of the IP Multimedia Subsystem (IMS) Services Market industry including definitions, division, key vendors, key Development and market challenges. The IP Multimedia Subsystem (IMS) Services Market analysis is provided the international markets including development trends, competitive landscape analysis, and key regions development statusThrough the statistical analysis, the report depicts the global IP Multimedia Subsystem (IMS) Services Market including capacity, production, production value, cost/profit, supply/demand and import/export. The entire market is further distributed by company, by country, and by application/type for the competitive landscape analysis. However, security concerns in virtualization, lack of availability of a skilled workforce, may hamper the growth of the market, but for a specific period.

Read More

Datacentre Network Architecture Sales Forecasts Reveal Positive Growth Through 2026

gemnewz | July 08, 2019

This detailed presentation on Datacentre Network Architecture market accumulated by Persistence Market Research features an exhaustive study conveying influential trends prevailing in the global business sphere. The report also presents significant details concerning market size, market share and profit estimations to offer an ensemble prediction about this business. Moreover, this report undertakes an accurate competitive analysis emphasizing growth strategies espoused by market leaders.The increase in data volume, need of storage, backup, archive and also the requirement data management create complexity in datacentres. These complexities are resolved through appropriate network architecture across the datacentres. The datacentre network architecture minimize the impact of disaster scenarios and it also provides tools for data recovery. Most of the enterprises consider the datacentre network architecture is an important element of organization strategy for regulatory compliance and protection and management of company and customer data.Emergence of software defined networking (SDN), network overlay technologies, network virtualization (NV), and efficient systems have been forcing many companies to move towards next generation datacentre networks. These emerging technologies will support software-defined data centre (SDDC) and also help to virtualize the network across all the datacentre It has been observed that most of the VMware customers are moving towards network virtualization to transform their datacentre from the client/server era to the mobile/cloud era.

Read More

GDPR and beyond The past, present and future of data privacy

siliconangle.com | July 08, 2019

There is a GDPR framework,Venkatraman explained. You start by classifying data. Then you apply specific policies to ensure you protect and back up the personal data. And then you go about meeting the specific requirements.GDPR has changed the data game, putting security and privacy on the front page, as well as on the boardroom agenda. IDC research has shown that data protection is a key influencer in IT investment decisions, with companies asking, How do I become data driven without compromising on security and sovereignty and data locality? Venkatraman stated. Actifios copy data virtualization can help companies achieve that goal, giving them the potential for a successful future, according to Venkatraman. Companies are moving from protecting data centers to protecting centers of data,Venkatraman predicted. If Actifio can help organizations protect multiple centers of data through a unified pane of glass and have that platform approach to data management, then they can help organizations become data thrivers, which gives them the competitive advantage.

Read More

IP Multimedia Subsystem (IMS) Services Market 2019 Dynamics, Comprehensive Analysis, Business Growth

worldanalytics24.com | July 08, 2019

The report provides an overview of the IP Multimedia Subsystem (IMS) Services Market industry including definitions, division, key vendors, key Development and market challenges. The IP Multimedia Subsystem (IMS) Services Market analysis is provided the international markets including development trends, competitive landscape analysis, and key regions development statusThrough the statistical analysis, the report depicts the global IP Multimedia Subsystem (IMS) Services Market including capacity, production, production value, cost/profit, supply/demand and import/export. The entire market is further distributed by company, by country, and by application/type for the competitive landscape analysis. However, security concerns in virtualization, lack of availability of a skilled workforce, may hamper the growth of the market, but for a specific period.

Read More

Datacentre Network Architecture Sales Forecasts Reveal Positive Growth Through 2026

gemnewz | July 08, 2019

This detailed presentation on Datacentre Network Architecture market accumulated by Persistence Market Research features an exhaustive study conveying influential trends prevailing in the global business sphere. The report also presents significant details concerning market size, market share and profit estimations to offer an ensemble prediction about this business. Moreover, this report undertakes an accurate competitive analysis emphasizing growth strategies espoused by market leaders.The increase in data volume, need of storage, backup, archive and also the requirement data management create complexity in datacentres. These complexities are resolved through appropriate network architecture across the datacentres. The datacentre network architecture minimize the impact of disaster scenarios and it also provides tools for data recovery. Most of the enterprises consider the datacentre network architecture is an important element of organization strategy for regulatory compliance and protection and management of company and customer data.Emergence of software defined networking (SDN), network overlay technologies, network virtualization (NV), and efficient systems have been forcing many companies to move towards next generation datacentre networks. These emerging technologies will support software-defined data centre (SDDC) and also help to virtualize the network across all the datacentre It has been observed that most of the VMware customers are moving towards network virtualization to transform their datacentre from the client/server era to the mobile/cloud era.

Read More

Events