Enterprise networking market in manufacturing segment is expected

The manufacturing segment in the enterprise networking market is expected to grow at a CAGR of over 8% from 2018 to 2024. The manufacturing industry is witnessing an increase in the demand for network virtualization solutions to centralize administrative tasks while improving scalability and reducing workloads. The rise in the number of cloud IIoT solutions is also fueling the demand for networking solutions that provide real-time visibility control and analytics.

Spotlight

Networking Technologies

Networking Technologies is a data communications consulting company, offering specialized technical services for the design, implementation, and support of network infrastructure and servers since 1998.

OTHER ARTICLES
Server Hypervisors

VM Applications for Software Development and Secure Testing

Article | September 9, 2022

Contents 1. Introduction 2. Software Development and Secure Testing 3. Using VMs in Software Development and Secure Testing 4. Conclusion 1. Introduction “Testing is an infinite process of comparing the invisible to the ambiguous in order to avoid the unthinkable happening to the anonymous.” —James Bach. Testing software is crucial for identifying and fixing security vulnerabilities. However, meeting quality standards for functionality and performance does not guarantee security. Thus, software testing nowadays is a must to identify and address application security vulnerabilities to maintain the following: Security of data history, databases, information, and servers Customers’ integrity and trust Web application protection from future attacks VMs provide a flexible and isolated environment for software development and security testing. They offer easy replication of complex configurations and testing scenarios, allowing efficient issue resolution. VMs also provide secure testing by isolating applications from the host system and enabling a reset to a previous state. In addition, they facilitate DevOps practices and streamline the development workflow. 2. Software Development and Secure Testing Software Secure Testing: The Approach The following approaches must be considered while preparing and planning for security tests: Architecture Study and Analysis: Understand whether the software meets the necessary requirements. Threat Classification: List all potential threats and risk factors that must be tested. Test Planning: Run the tests based on the identified threats, vulnerabilities, and security risks. Testing Tool Identification: For software security testing tools for web applications, the developer must identify the relevant security tools to test the software for specific use cases. Test-Case Execution: After performing a security test, the developer should fix it using any suitable open-source code or manually. Reports: Prepare a detailed test report of the security tests performed, containing a list of the vulnerabilities, threats, and issues resolved and the ones that are still pending. Ensuring the security of an application that handles essential functions is paramount. This may involve safeguarding databases against malicious attacks or implementing fraud detection mechanisms for incoming leads before integrating them into the platform. Maintaining security is crucial throughout the software development life cycle (SDLC) and must be at the forefront of developers' minds while executing the software's requirements. With consistent effort, the SDLC pipeline addresses security issues before deployment, reducing the risk of discovering application vulnerabilities while minimizing the damage they could cause. A secure SDLC makes developers responsible for critical security. Developers need to be aware of potential security concerns at each step of the process. This requires integrating security into the SDLC in ways that were not needed before. As anyone can potentially access source code, coding with potential vulnerabilities in mind is essential. As such, having a robust and secure SDLC process is critical to ensuring applications are not subject to attacks by hackers. 3. Using VMs in Software Development and Secure Testing: Snapshotting: Snapshotting allows developers to capture a VM's state at a specific point in time and restore it later. This feature is helpful for debugging and enables developers to roll back to a previous state when an error occurs. A virtual machine provides several operations for creating and managing snapshots and snapshot chains. These operations let users create snapshots, revert to any snapshots in the chain, and remove snapshots. In addition, extensive snapshot trees can be created to streamline the flow. Virtual Networking: It allows virtual machines to be connected to virtual networks that simulate complex network topologies, allowing developers to test their applications in different network environments. This allows expanding data centers to cover multiple physical locations, gaining access to a plethora of more efficient options. This empowers them to effortlessly modify the network as per changing requirements without any additional hardware. Moreover, providing the network for specific applications and needs offers greater flexibility. Additionally, it enables workloads to be moved seamlessly across the network infrastructure without compromising on service, security, or availability. Resource Allocation: VMs can be configured with specific resource allocations such as CPU, RAM, and storage, allowing developers to test their applications under different resource constraints. Maintaining a 1:1 ratio between the virtual machine processor and its host or core is highly recommended. It's crucial to refrain from over-subscribing virtual machine processors to a single core, as this could lead to stalled or delayed events, causing significant frustration and dissatisfaction among users. However, it is essential to acknowledge that IT administrators sometimes overallocate virtual machine processors. In such cases, a practical approach is to start with a 2:1 ratio and gradually move towards 4:1, 8:1, 12:1, and so on while bringing virtual allocation into IT infrastructure. This approach ensures a safe and seamless transition towards optimized virtual resource allocation. Containerization within VMs: Containerization within VMs provides an additional layer of isolation and security for applications. Enterprises are finding new use cases for VMs to utilize their in-house and cloud infrastructure to support heavy-duty application and networking workloads. This will also have a positive impact on the environment. DevOps teams use containerization with virtualization to improve software development flexibility. Containers allow multiple apps to run in one container with the necessary components, such as code, system tools, and libraries. For complex applications, both virtual machines and containers are used together. However, while containers are used for the front-end and middleware, VMs are used for the back-end. VM Templates: VM templates are pre-configured virtual machines that can be used as a base for creating new virtual machines, making it easier to set up development and testing environments. A VM template is an image of a virtual machine that serves as a master copy. It includes VM disks, virtual devices, and settings. By using a VM template, cloning a virtual machine multiple times can be achieved. When you clone a VM from a template, the clones are independent and not linked to the template. VM templates are handy when a large number of similar VMs need to be deployed. They preserve VM consistency. To edit a template, convert it to a VM, make the necessary changes, and then convert the edited VM back into a new template. Remote Access: VMs can be accessed remotely, allowing developers and testers to collaborate more effectively from anywhere worldwide. To manage a virtual machine, follow these steps: enable remote access, connect to the virtual machine, and then access the VNC or serial console. Once connected, full permission to manage the virtual machine is granted with the user's approval. Remote access provides a secure way to access VMs, as connections can be encrypted and authenticated to prevent unauthorized access. Additionally, remote access allows for easier management of VMs, as administrators can monitor and control virtual machines from a central location. DevOps Integration: DevOps is a collection of practices, principles, and tools that allow a team to release software quickly and efficiently. Virtualization is vital in DevOps when developing intricate cloud, API, and SOA systems. Virtual machines enable teams to simulate environments for creating, testing, and launching code, ultimately preserving computing resources. While commencing a bug search at the API layer, teams find that virtual machines are suitable for test-driven development (TDD). Virtualization providers handle updates, freeing up DevOps teams, to focus on other areas and increasing productivity by 50 –60%. In addition, VMs allow for simultaneous testing of multiple release and patch levels, improving product compatibility and interoperability. 4. Conclusion The outlook for virtual machine applications is highly promising in the development and testing fields. With the increasing complexity of development and testing processes, VMs can significantly simplify and streamline these operations. In the future, VMs are expected to become even more versatile and potent, providing developers and testers with a broader range of tools and capabilities to facilitate the development process. One potential future development is integrating machine learning and artificial intelligence into VMs. This would enable VMs to automate various tasks, optimize the allocation of resources, and generate recommendations based on performance data. Moreover, VMs may become more agile and lightweight, allowing developers and testers to spin up and spin down instances with greater efficiency. The future of VM applications for software development and security testing looks bright, with continued innovation and development expected to provide developers and testers with even more powerful and flexible tools to improve the software development process.

Read More
Virtual Desktop Tools

Virtual Machine Security Risks and Mitigation in Cloud Computing

Article | August 12, 2022

Analyzing risks and implementing advanced mitigation strategies: Safeguard critical data, fortify defenses, and stay ahead of emerging threats in the dynamic realm of virtual machines in cloud. Contents 1. Introduction 2. 10 Security Risks Associated with Virtual Machines in Cloud Computing 3. Best Practices to Avoid Security Compromise 4. Conclusion 1. Introduction Cloud computing has revolutionized the way businesses operate by providing flexible, scalable, and cost-effective infrastructure for running applications and services. Virtual machines (VMs) are a key component of cloud computing, allowing multiple virtual machines to run on a single physical machine. However, the use of virtual machines in cloud computing introduces new security risks that need to be addressed to ensure the confidentiality, integrity, and availability of data and services. Effective VM security in the cloud requires a comprehensive approach that involves cloud providers and users working together to identify and address potential virtual machine security threats. By implementing these best practices and maintaining a focus on security, cloud computing can provide a secure and reliable platform for businesses to run their applications and services. 2. 10 Security Risks Associated with Virtual Machines in Cloud Computing Denial of Service (DoS) attacks: These are attacks that aim to disrupt the availability of a VM or the entire cloud infrastructure by overwhelming the system with traffic or resource requests. Insecure APIs: Cloud providers often expose APIs that allow users to manage their VMs. If these APIs are not properly secured, attackers can exploit them to gain unauthorized access to VMs or manipulate their configurations. Data leakage: Virtual machines can store sensitive data such as customer information or intellectual property. If not secured, this data can be exposed to unauthorized access or leakage. Shared resources: VMs in cloud environments often share physical resources such as memory, CPU, and network interfaces. If these resources are not isolated, a compromised VM can potentially affect the security and performance of other VMs running on the same physical host. Lack of visibility: Virtual machines in cloud environments can be more difficult to monitor than physical machines. This can make it harder to detect security incidents or anomalous behavior. Insufficient logging and auditing: If cloud providers do not implement appropriate logging and auditing mechanisms, it can be difficult to determine the cause and scope of a security incident. VM escape: This is when an attacker gains access to the hypervisor layer and then escapes into the host operating system or other VMs running on the same physical host. Side-channel attacks: This is when an attacker exploits the physical characteristics of the hardware to gain unauthorized access to a VM. Examples of side-channel attacks include timing attacks, power analysis attacks, and electromagnetic attacks. Malware attacks: VMs can be infected with malware, just like physical machines. Malware can be used to steal data, launch attacks on other VMs or systems, or disrupt the functioning of the VM. Insider threats: Malicious insiders can exploit their access to VMs to steal data, modify configurations, or launch attacks. 3. Best Practices to Avoid Security Compromise To mitigate these risks, there are several virtual machine security guidelines that cloud service providers and users can follow: Keep software up-to-date: Regularly updating software and security patches for virtual machines is crucial in preventing known vulnerabilities from being exploited by hackers. Software updates fix bugs and security flaws that could allow unauthorized access, data breaches, or malware attacks. According to a study, 60% of data breaches are caused by vulnerabilities that were not patched or updated in a timely manner.(Source: Ponemon Institute) Use secure hypervisors: A hypervisor is a software layer that enables multiple virtual machines to run on a single physical server. Secure hypervisors are designed to prevent unauthorized access to virtual machines and protect them from potential security threats. When choosing a hypervisor, it is important to select one that has undergone rigorous testing and meets industry standards for security. In 2018, a group of researchers discovered a new type of attack called "Foreshadow" (also known as L1 Terminal Fault). The attack exploits vulnerabilities in Intel processors and can be used to steal sensitive data from virtual machines running on the same physical host. Secure hypervisors that have implemented hardware-based security features can provide protection against Foreshadow and similar attacks. (Source: Foreshadow) Implement strong access controls: Access control is the practice of restricting access to virtual machines to authorized users. Multi-factor authentication adds an extra layer of security by requiring users to provide more than one type of authentication method before accessing VMs. Strong access controls limit the risk of unauthorized access and can help prevent data breaches. According to a survey, organizations that implemented multi-factor authentication saw a 98% reduction in the risk of phishing-related account breaches. (Source: Duo Security) Monitor VMs for anomalous behavior: Monitoring virtual machines for unusual or unexpected behavior is an essential security practice. This includes monitoring network traffic, processes running on the VM, and other metrics that can help detect potential security incidents. By monitoring VMs, security teams can detect and respond to security threats before they can cause damage. A study found that 90% of organizations that implemented a virtualized environment experienced security benefits, such as improved visibility into security threats and faster incident response times. (Source: VMware) Use Encryption: Encryption is the process of encoding information in such a way that only authorized parties can access it. Encrypting data both in transit and at rest protects it from interception or theft by hackers. This can be achieved using industry-standard encryption protocols and technologies. According to a report by, the average cost of a data breach in 2020 was $3.86 million. The report also found that organizations that implemented encryption had a lower average cost of a data breach compared to those that did not (Source: IBM) Segregate VMs: Segregating virtual machines is the practice of keeping sensitive VMs separate from less sensitive ones. This reduces the risk of lateral movement, which is when a hacker gains access to one VM and uses it as a stepping stone to gain access to other VMs in the same environment. Segregating VMs helps to minimize the risk of data breaches and limit the potential impact of a security incident. A study found that organizations that implemented a virtualized environment without adequate segregation and access controls were more vulnerable to VM security breaches and data loss. (Source: Ponemon Institute) Regularly Back-up VMs: Regularly backing up virtual machines is a critical security practice that can help mitigate the impact of malware attacks, system failures, or other security incidents. Backups should be stored securely and tested regularly to ensure that they can be restored quickly in the event of a security incident. A survey conducted found that 42% of organizations experienced a data loss event in 2020 with the most common cause being accidental deletion by an employee (29%). (Source: Veeam) 4. Conclusion The complexity of cloud environments and the shared responsibility model for security require organizations to adopt a comprehensive security approach that spans multiple infrastructure layers, from the physical to the application layer. The future of virtual machine security concern in cloud computing will require continued innovation and adaptation to new threats and vulnerabilities. As a result, organizations must remain vigilant and proactive in their security efforts, leveraging the latest technologies and best practices to protect their virtual machines, the sensitive data and resources they contain.

Read More
Server Hypervisors

Virtualization Can Help Substantially Reduce Computing Costs

Article | May 18, 2023

Businesses use a lot of technology to keep themselves competitive and Businesses use a lot of technology to keep themselves competitive and operationally efficient. One way that organizations use to make their technology infrastructure more accessible is through the use of virtualization. Let’s discuss what virtualization is, how it benefits businesses, and some examples of how you might consider leveraging virtualization to your company’s benefit. Virtualization for Hardware and Software Virtualization in its most basic sense is taking something and making it virtual. In regards to hardware and software, it involves taking these parts of your technology infrastructure and making them available in a virtual environment. Virtual applications and hardware solutions can be deployed to the cloud so that they can be accessed by any online device. Some examples of virtualization might include creating virtual machines, like workstations and server units, that are hosted in a virtual environment for as-needed access

Read More
Virtual Desktop Tools

Rising Importance of Network Virtualization

Article | July 26, 2022

Network virtualization combines network resources to integrate several physical networks, segment a network, or construct software networks among VMs. IT teams can construct numerous separate virtual networks using network virtualization. Virtual networks can be added and scaled without changing hardware. Teams can start up logical networks more rapidly in response to business needs using network virtualization. This adaptability improves service delivery, efficiency, and control. Importance of Network Virtualisation Network virtualization entails developing new rules for the delivery of network services. This involves software-defined data centers (SDDC), cloud computing, and edge computing. Virtualization assists in the transformation of networks from rigid, wasteful, and static to optimized, agile, and dynamic. To ensure agility and speed, modern virtual networks must keep up with the needs of cloud-hosted, decentralized applications while addressing cyberthreats. You can deploy and upgrade programs in minutes thanks to network virtualization. This eliminates the need to spend time setting up the infrastructure to accommodate the new applications. What is the Process of Network Virtualization? Several network functions that were previously done manually on hardware are now automated through network virtualisation. Network managers can construct, maintain, and provide networks programmatically in software while employing the hardware as a packet-forwarding backplane. Physical network resources, such as virtual private networks (VPNs), load balancing, firewalling, routing, and switching, are pooled and supplied in software. To do this, you merely require Internet Protocol (IP) packet forwarding from the hardware or physical network. Individual workloads, such as virtual machines, can access network services that have been distributed to a virtual layer. There are several kinds of virtual machines accessible. The finest virtual machines enable network administrators to access all parts of a network from a single point of access. Closing Lines Network virtualization will remain a critical component in both business and carrier network architectures. Network virtualization projects in the future will inevitably incorporate zero trust, automation, and edge and cloud computing.

Read More

Spotlight

Networking Technologies

Networking Technologies is a data communications consulting company, offering specialized technical services for the design, implementation, and support of network infrastructure and servers since 1998.

Related News

GDPR and beyond The past, present and future of data privacy

siliconangle.com | July 08, 2019

There is a GDPR framework,Venkatraman explained. You start by classifying data. Then you apply specific policies to ensure you protect and back up the personal data. And then you go about meeting the specific requirements.GDPR has changed the data game, putting security and privacy on the front page, as well as on the boardroom agenda. IDC research has shown that data protection is a key influencer in IT investment decisions, with companies asking, How do I become data driven without compromising on security and sovereignty and data locality? Venkatraman stated. Actifios copy data virtualization can help companies achieve that goal, giving them the potential for a successful future, according to Venkatraman. Companies are moving from protecting data centers to protecting centers of data,Venkatraman predicted. If Actifio can help organizations protect multiple centers of data through a unified pane of glass and have that platform approach to data management, then they can help organizations become data thrivers, which gives them the competitive advantage.

Read More

IP Multimedia Subsystem (IMS) Services Market 2019 Dynamics, Comprehensive Analysis, Business Growth

worldanalytics24.com | July 08, 2019

The report provides an overview of the IP Multimedia Subsystem (IMS) Services Market industry including definitions, division, key vendors, key Development and market challenges. The IP Multimedia Subsystem (IMS) Services Market analysis is provided the international markets including development trends, competitive landscape analysis, and key regions development statusThrough the statistical analysis, the report depicts the global IP Multimedia Subsystem (IMS) Services Market including capacity, production, production value, cost/profit, supply/demand and import/export. The entire market is further distributed by company, by country, and by application/type for the competitive landscape analysis. However, security concerns in virtualization, lack of availability of a skilled workforce, may hamper the growth of the market, but for a specific period.

Read More

Datacentre Network Architecture Sales Forecasts Reveal Positive Growth Through 2026

gemnewz | July 08, 2019

This detailed presentation on Datacentre Network Architecture market accumulated by Persistence Market Research features an exhaustive study conveying influential trends prevailing in the global business sphere. The report also presents significant details concerning market size, market share and profit estimations to offer an ensemble prediction about this business. Moreover, this report undertakes an accurate competitive analysis emphasizing growth strategies espoused by market leaders.The increase in data volume, need of storage, backup, archive and also the requirement data management create complexity in datacentres. These complexities are resolved through appropriate network architecture across the datacentres. The datacentre network architecture minimize the impact of disaster scenarios and it also provides tools for data recovery. Most of the enterprises consider the datacentre network architecture is an important element of organization strategy for regulatory compliance and protection and management of company and customer data.Emergence of software defined networking (SDN), network overlay technologies, network virtualization (NV), and efficient systems have been forcing many companies to move towards next generation datacentre networks. These emerging technologies will support software-defined data centre (SDDC) and also help to virtualize the network across all the datacentre It has been observed that most of the VMware customers are moving towards network virtualization to transform their datacentre from the client/server era to the mobile/cloud era.

Read More

GDPR and beyond The past, present and future of data privacy

siliconangle.com | July 08, 2019

There is a GDPR framework,Venkatraman explained. You start by classifying data. Then you apply specific policies to ensure you protect and back up the personal data. And then you go about meeting the specific requirements.GDPR has changed the data game, putting security and privacy on the front page, as well as on the boardroom agenda. IDC research has shown that data protection is a key influencer in IT investment decisions, with companies asking, How do I become data driven without compromising on security and sovereignty and data locality? Venkatraman stated. Actifios copy data virtualization can help companies achieve that goal, giving them the potential for a successful future, according to Venkatraman. Companies are moving from protecting data centers to protecting centers of data,Venkatraman predicted. If Actifio can help organizations protect multiple centers of data through a unified pane of glass and have that platform approach to data management, then they can help organizations become data thrivers, which gives them the competitive advantage.

Read More

IP Multimedia Subsystem (IMS) Services Market 2019 Dynamics, Comprehensive Analysis, Business Growth

worldanalytics24.com | July 08, 2019

The report provides an overview of the IP Multimedia Subsystem (IMS) Services Market industry including definitions, division, key vendors, key Development and market challenges. The IP Multimedia Subsystem (IMS) Services Market analysis is provided the international markets including development trends, competitive landscape analysis, and key regions development statusThrough the statistical analysis, the report depicts the global IP Multimedia Subsystem (IMS) Services Market including capacity, production, production value, cost/profit, supply/demand and import/export. The entire market is further distributed by company, by country, and by application/type for the competitive landscape analysis. However, security concerns in virtualization, lack of availability of a skilled workforce, may hamper the growth of the market, but for a specific period.

Read More

Datacentre Network Architecture Sales Forecasts Reveal Positive Growth Through 2026

gemnewz | July 08, 2019

This detailed presentation on Datacentre Network Architecture market accumulated by Persistence Market Research features an exhaustive study conveying influential trends prevailing in the global business sphere. The report also presents significant details concerning market size, market share and profit estimations to offer an ensemble prediction about this business. Moreover, this report undertakes an accurate competitive analysis emphasizing growth strategies espoused by market leaders.The increase in data volume, need of storage, backup, archive and also the requirement data management create complexity in datacentres. These complexities are resolved through appropriate network architecture across the datacentres. The datacentre network architecture minimize the impact of disaster scenarios and it also provides tools for data recovery. Most of the enterprises consider the datacentre network architecture is an important element of organization strategy for regulatory compliance and protection and management of company and customer data.Emergence of software defined networking (SDN), network overlay technologies, network virtualization (NV), and efficient systems have been forcing many companies to move towards next generation datacentre networks. These emerging technologies will support software-defined data centre (SDDC) and also help to virtualize the network across all the datacentre It has been observed that most of the VMware customers are moving towards network virtualization to transform their datacentre from the client/server era to the mobile/cloud era.

Read More

Events