New Intel retail platform: in-store 3D knitting, virtual reality, stock management robots

Intel CEO Brian Krzanich has announced that Intel will be developing in-store 3D knitting technology that will be part of the Intel Responsive Retail Platform (Intel RRP), a horizontal platform for connecting retail hardware, software, APIs, and sensors in a standardized way.

Spotlight

Mirantis

Mirantis is the flexible infrastructure company harnessing open source to free application owners from operations concerns. The company employs a unique build-operate-transfer approach to deliver two distinct products- Mirantis Cloud Platform, which is based on Kubernetes and OpenStack and helps services providers and enterprises run highly tunable private clouds powered by infrastructure-as-code and based on open standards.

OTHER ARTICLES
Virtual Desktop Tools, Server Hypervisors

Discovering SCVMM and Its Features

Article | June 8, 2023

System Center Virtual Machine Manager (SCVMM) is a management tool for Microsoft’s Hyper-V virtualization platform. It is part of Microsoft’s System Center product suite, which also includes Configuration Manager and Operations Manager, among other tools. SCVMM provides a single pane of glass for managing your on-premises and cloud-based Hyper-V infrastructures, and it’s a more capable alternative to Windows Server tools built for the same purpose.

Read More
Server Hypervisors

Network Virtualization: The Future of Businesses and Networks

Article | May 18, 2023

Network virtualization has emerged as the widely recommended solution for the networking paradigm's future. Virtualization has the potential to revolutionize networks in addition to providing a cost-effective, flexible, and secure means of communication. Network virtualization isn't an all-or-nothing concept. It can help several organizations with differing requirements, or it can provide a bunch of new advantages for a single enterprise. It is the process of combining a network's physical hardware into a single, virtual network. This is often accomplished by running several virtual guest machines in software containers on a single physical host system. Network virtualization is indeed the new gold standard for networking, and it is being embraced by enterprises of all kinds globally. By integrating their current network gear into a single virtual network, businesses can reduce operating expenses, automate network and security processes, and lay the groundwork for future growth. Network virtualization also enables organizations to simulate traditional hardware like servers, storage devices, and network resources. The physical network performs basic tasks like packet forwarding, while virtual versions handle more complex activities like networking service management and deployment. Addressing Network Virtualization Challenges Surprisingly, IT teams might encounter network virtualization challenges that are both technical and non-technical in nature. Let's look at some common challenges and discuss how to overcome them. Change in Network Architecture Practically, the first big challenge is shifting from an architecture that depends heavily on routers, switches, and firewalls. Instead, these services are detached from conventional hardware and put on hypervisors that virtualize these operations. Virtualized network services are shared, scaled, and moved as required. Migrating current LANs and data centers to a virtualized platform require careful planning. This migration involves the following tasks: Determine how much CPU, computation, and storage resources will be required to run virtualized network services. Determine the optimal approach for integrating network resilience and security services. Determine how the virtualized network services will be implemented in stages to avoid disrupting business operations. The key to a successful migration is meticulous preparation by architects who understand the business's network requirements. This involves a thorough examination of existing apps and services, as well as a clear knowledge of how data should move across the company most effectively. Moreover, a progressive approach to relocation is often the best solution. In this instance, IT teams can make changes to the virtualization platform without disrupting the whole corporate network. Network Visibility Network virtualization has the potential to considerably expand the number of logical technology layers that must collaborate. As a result, traditional network and data center monitoring technologies no longer have insight into some of these abstracted levels. In other circumstances, visibility can be established, but the tools fail to show the information correctly so that network operators can understand it. In either case, deploying and managing modern network visibility technologies is typically the best choice. When an issue arises, NetOps personnel are notified of the specific service layer. Automation and AI The enhanced level of automation and self-service operations that can be built into a platform is a fundamental aspect of network virtualization. While these activities can considerably increase the pace of network upgrades while decreasing management overhead, they need the documentation and implementation of a new set of standards and practices. Understand that prior network architectures were planned and implemented utilizing actual hardware appliances on a hop-by-hop basis. A virtualized network, on the other hand, employs a centralized control plane to govern and push policies to all sections of the network. Changes may occur more quickly in this aspect, but various components must be coordinated to accomplish their roles in harmony. As a result, network teams should move their attention away from network operations that are already automated. Rather, their new responsibility is to guarantee that the core automation processes and AI are in sync in order to fulfill those automated tasks. Driving Competitive Edge with Network Virtualization Virtualization in networking or virtual machines within an organization is not a new trend. Even small and medium businesses have realized the benefits of network virtualization, especially when combined with a hosted cloud service provider. Because of this, the demand for enterprise network virtualization is rising, driving higher end-user demands and the proliferation of devices and business tools. These network virtualization benefits can help boost business growth and gain a competitive edge. Gaining a Competitive Edge: Network Virtualization Benefits Cost-Savings on Hardware Faster Desktop and Server Provisioning and Deployment Improved Data Security and Disaster Recovery Increasing IT Operational Efficiency Small Footprint and Energy Saving Network Virtualization: The Path to Digital Transformation Business is at the center of digital transformation, but technology is needed to make it happen. Integrated clouds, highly modern data centers, digital workplaces, and increased data center security are all puzzle pieces, and putting them all together requires a variety of various products and services that are deployed cohesively. The cloud revolution is still having an influence on IT, transforming how digital content is consumed and delivered. This should come as no surprise that such a shift has influenced how we feel about current networking. When it boils down to it, the purpose of digital transformation for every company, irrespective of industry, is the same: to boost the speed with which you can respond to market changes and evolving business needs; to enhance your ability to embrace and adapt to new technology, and to improve overall security. As businesses realize that the underlying benefit of cloud adoption and enhanced virtualization isn't simply about cost savings, digital strategies are evolving, becoming more intelligent and successful in the process. Network virtualization is also a path toward the smooth digital transformation of any business. How does virtualization help in accelerating digital transformation? Combining public and private clouds, involving hardware-based computing, storage, and networking software definition. A hyper-converged infrastructure that integrates unified management with virtualized computing, storage, and networking could be included. Creating a platform for greater productivity by providing the apps and services consumers require when and when they utilize them. This should include simplifying application access and administration as well as unifying endpoint management. Improving network security and enhancing security flexibility to guarantee that quicker speed to market is matched by tighter security. Virtualization will also help businesses to move more quickly and safely, bringing products—and profits—to market faster. Enhancing Security with Network Virtualization Security has evolved as an essential component of every network architecture. However, since various areas of the network are often segregated from one another, it might be challenging for network teams to design and enforce network virtualization security standards that apply to the whole network. Zero trust can integrate such network parts and their accompanying virtualization activities. Throughout the network, the zero-trust architecture depends on the user and device authentication. If LAN users wish to access data center resources, they must first be authenticated. The secure connection required for endpoints to interact safely is provided by a zero-trust environment paired with network virtualization. To facilitate these interactions, virtual networks can be ramped up and down while retaining the appropriate degree of traffic segmentation. Access policies, which govern which devices can connect with one another, are a key part of this process. If a device is allowed to access a data center resource, the policy should be understood at both the WAN and campus levels. Some of the core network virtualization security features are: Isolation and multitenancy are critical features of network virtualization. Segmentation is related to isolation; however it is utilized in a multitier virtual network. A network virtualization platform's foundation includes firewalling technologies that enable segmentation inside virtual networks. Network virtualization enables automatic provisioning and context-sharing across virtual and physical security systems. Investigating the Role of Virtualization in Cloud Computing Virtualization in the cloud computing domain refers to the development of virtual resources (such as a virtual server, virtual storage device, virtual network switch, or even a virtual operating system) from a single resource of its type that also shows up as several personal isolated resources or environments that users can use as a separate individual physical resource. Virtualization enables the benefits of cloud computing, such as ease of scaling up, security, fluid or flexible resources, and so on. If another server is necessary, a virtual server will be immediately created, and a new server will be deployed. When we need more memory, we increase the virtual server configurations we currently have, and we now have the extra RAM we need. As a result, virtualization is the underlying technology of the cloud computing business model. The Benefits of Virtualization in Cloud Computing: Efficient hardware utilization Virtualization improves availability Disaster recovery is quick and simple Energy is saved by virtualization Setup is quick and simple Cloud migration has become simple Motivating Factors for the Adoption of Network Virtualization Demand for enterprise networks continues to climb, owing to rising end-user demands and the proliferation of devices and business software. Thanks to network virtualization, IT companies are gaining the ability to respond to shifting demands and match their networking capabilities with their virtualized storage and computing resources. In fact, according to a recent SDxCentral report, 88% of respondents believe it is "important" or "mission critical" to implement a network virtualization software over the next two to five years. Virtualization is also an excellent alternative for businesses that employ outsourced IT services, are planning mergers or acquisitions or must segregate IT teams owing to regulatory compliance. Reasons to Adopt Network Virtualization: A Business Needs Speed Security Requirements Are Rising Apps can Move Around Micro-segmentation IT Automation and Orchestration Reduce Hardware Dependency and CapEx: Adopt Multi-Tenancy Cloud Disaster Recovery mproved Scalability Wrapping-Up Network virtualization and cloud computing are emerging technologies of the future. As CIOs get actively involved in organizational systems, these new concepts will be implemented in more businesses. As consumer demand for real-time services expands, businesses will be driven to explore network virtualization as the best way to take their networks to the next level. The networking future is here. FAQ Why is network virtualization important for business? By integrating their current network gear into a single virtual network, businesses can reduce operating expenses, automate network and security processes, and set the stage for future growth. Where is network virtualization used? Network virtualization can be utilized in application development and testing to simulate hardware and system software realistically. Network virtualization in application performance engineering allows for the modeling of connections among applications, services, dependencies, and end users for software testing. How does virtualization work in cloud computing? Virtualization, in short, enables cloud providers to provide users alongside existing physical computer infrastructure. As a simple and direct process, it allows cloud customers to buy only the computing resources they require when they want them and to maintain those resources cost-effectively as the demand grows.

Read More
Virtual Desktop Tools

Evaluating the Impact of Application Virtualization

Article | August 12, 2022

The emergence of the notion of virtualization in today's digital world has turned the tables. It has assisted the sector in increasing production and making every activity easy and effective. One of the most remarkable innovations is the virtualization of applications, which allows users to access and utilize applications even if they are not installed on the system on which they are working. As a result, the cost of obtaining software and installing it on specific devices is reduced. Application virtualization is a technique that separates an application from the operating system on which it runs. It provides access to a program without requiring it to be installed on the target device. The program functions and interacts with the user as if it were native to the device. The program window can be resized, moved, or minimized, and the user can utilize normal keyboard and mouse movements. There might be minor differences from time to time, but the user gets a seamless experience. Let’s have a look at the ways in which application virtualization helps businesses. The Impact of Application Virtualization • Remote-Safe Approach Application virtualization enables remote access to essential programs from any end device in a safe and secure manner. With remote work culture developing as an increasingly successful global work paradigm, the majority of businesses have adapted to remote work-from-home practice. This state-of-the-art technology is the best option for remote working environments because it combines security and convenience of access. • Expenditure Limitations If you have a large end-user base that is always growing, acquiring and operating separate expensive devices for each individual user would definitely exhaust your budget. In such situations, virtualization will undoubtedly come in handy because it has the potential to offer all necessary applications to any target device. • Rolling Out Cloud Applications Application virtualization can aid in the development and execution of a sophisticated and controlled strategy to manage and assure a seamless cloud transition of an application that is presently used as an on-premise version in portions of the same enterprise. In such cases, it is vital to guarantee that the application continues to work properly while being rolled out to cloud locations. You can assure maximum continuity and little impact on your end customers by adopting a cutting-edge virtualization platform. These platforms will help to ensure that both the on-premise and cloud versions of the application are delivered smoothly to diverse groups sitting inside the same workspace. • Implementation of In-House Applications Another prominent case in which virtualization might be beneficial is the deployment and execution of in-house applications. Developers often update such programs on a regular basis. Application virtualization enables extensive remote updates, installation, and distribution of critical software. As a result, this technology is crucial for enterprises that build and employ in-house applications. Closing Lines There is no doubt about the efficiency and advantages of application virtualization. You do not need to be concerned with installing the programs on your system. Moreover, you do not need to maintain the minimum requirements for running such programs since they will operate on the hosted server, giving you the impression that the application is operating on your system. There will be no performance concerns when the program runs. There will not be any overload on your system, and you will not encounter any compatibility issues as a result of your system's underlying operating system.

Read More
Virtual Desktop Tools

Managing Multi-Cloud Complexities for a Seamless Experience

Article | July 7, 2022

Introduction The early 2000s were milestone moments for the cloud. Amazon Web Services (AWS) entered the market in 2006, while Google revealed its first cloud service in 2007. Fast forward to 2020, when the pandemic boosted digital transformation efforts by around seven years (according to McKinsey), and the cloud has become a commercial necessity today. It not only facilitated the swift transition to remote work, but it also remains critical in maintaining company sustainability and creativity. Many can argue that the large-scale transition to the cloud in the 2010s was necessary to enable the digital-first experiences that remote workers and decentralized businesses need today. Multi-cloud and hybrid cloud setups are now the norm. According to Gartner, most businesses today use a multi-cloud approach to reduce vendor lock-in or to take advantage of more flexible, best-of-breed solutions. However, managing multi-cloud systems increases cloud complexity, and IT concerns, frequently slowing rather than accelerating innovation. According to 2022 research done by IntelligentCIO, the average multi-cloud system includes five platforms, including AWS, Microsoft Azure, Google Cloud, and IBM Red Hat, among others. Managing Multi-Cloud Complexities Like a Pro Your multi-cloud strategy should satisfy your company's requirements while also laying the groundwork for managing various cloud deployments. Creating a proactive plan for managing multi-cloud setups is one of the finest features that can distinguish your company. The five strategies for handling multi-cloud complexity are outlined below. Managing Data with AI and ML AI and machine learning can help manage enormous quantities of data in multi-cloud environments. AI simulates human decision-making and performs tasks as well as humans or even better at times. Machine learning is a type of artificial intelligence that learns from data, recognizes patterns, and makes decisions with minimum human interaction. AI and ML to help discover the most important data, reducing big data and multi-cloud complexity. AI and machine learning enable more simplicity and better data control. Integrated Management Structure Keeping up with the growing number of cloud services from several providers requires a unified management structure. Multiple cloud management requires IT time, resources, and technology to juggle and correlate infrastructure alternatives. Routinely monitor your cloud resources and service settings. It's important to manage apps, clouds, and people globally. Ensure you have the technology and infrastructure to handle several clouds. Developing Security Strategy Operating multiple clouds requires a security strategy and seamless integration of security capabilities. There's no single right answer since vendors have varied policies and cybersecurity methods. Storing data on many cloud deployments prevents data loss. Handling backups and safety copies of your data are crucial. Regularly examine your multi-cloud network's security. The cyber threat environment will vary as infrastructure and software do. Multi-cloud strategies must safeguard data and applications. Skillset Management Multi-cloud complexity requires skilled operators. Do you have the appropriate IT personnel to handle multi-cloud? If not, can you use managed or cloud services? These individuals or people are in charge of teaching the organization about how each cloud deployment helps the company accomplish its goals. This specialist ensures all cloud entities work properly by utilizing cloud technologies. Closing Lines Traditional cloud monitoring solutions are incapable of dealing with dynamic multi-cloud setups, but automated intelligence is the best at getting to the heart of cloud performance and security concerns. To begin with, businesses require end-to-end observability in order to see the overall picture. Add automation and causal AI to this capacity, and teams can obtain the accurate answers they require to better optimize their environments, freeing them up to concentrate on increasing innovation and generating better business results.

Read More

Spotlight

Mirantis

Mirantis is the flexible infrastructure company harnessing open source to free application owners from operations concerns. The company employs a unique build-operate-transfer approach to deliver two distinct products- Mirantis Cloud Platform, which is based on Kubernetes and OpenStack and helps services providers and enterprises run highly tunable private clouds powered by infrastructure-as-code and based on open standards.

Related News

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Server Virtualization

Panasonic Automotive Introduces Neuron High-Performance Compute (HPC) to Advance to a Software-Defined Mobility Future

PR Newswire | January 09, 2024

Panasonic Automotive Systems Company of America, a tier-one automotive supplier and a division of Panasonic Corporation of North America, announced its High-Performance Compute (HPC) system. Named Neuron, this innovation addresses the rapidly evolving mobility needs anticipated for software-defined vehicle advancements. As vehicles become more software reliant, vehicle systems must support the extended software lifecycle by enabling software upgrades and prolonging the supporting hardware capability. Cars rely on hardware and software compute platforms to process, share, sense, and derive insights to handle functions for assisted driving. Panasonic Automotive's Neuron HPC allows for not only software updates and upgrades but also hardware upgrades across platform lifecycles. The Neuron HPC can aggregate multiple computing zones to reduce the cost, weight and integration complexity of the vehicle by removing redundant components. Panasonic Automotive's design supports effortless up-integration with high-performance and heavy data input processing capability. Importantly, the design is upgradeable, scalable and future-proof across today's evolving in-vehicle platforms. Neuron HPC Architecture & Design Panasonic Automotive's High Performance Compute architecture could reduce the number of distributed electronic control units (ECUs) by up to 80%1 – allowing for faster, lighter, cross-domain computing for real-time, cross-functional communications. The Neuron HPC design is suited for any mobility platform including internal combustion engine, hybrid, fuel cell or electric vehicles. "In collaboration with OEMs, Panasonic Automotive has designed and met some of the largest central compute platform challenges in the industry in order to make the driving experience evolve with technology," said Andrew Poliak, CTO, Panasonic Automotive Systems Company of America. "Neuron maximizes performance, safety and innovation over the entire ownership of the consumer's vehicle and enables OEMs with a future-proof SDV platform for ensuing generations of mobility needs." Key Systems, UX Features & Technical Benefits With a streamlined design, the Neuron HPC incorporates up-integration capability by consolidating multiple ECUs into one centralized nucleus to handle all levels of ADAS, chassis, body, and in-cabin infotainment features. About Panasonic Automotive Systems Company of America  Panasonic Automotive Systems Company of America is a division company of Panasonic Corporation of North America and is a leading global supplier of automotive infotainment and connectivity system solutions. Panasonic Automotive Systems Company of America acts as the North American affiliate of Panasonic Automotive Systems Co., Ltd., which coordinates global automotive. Panasonic Automotive Systems Company of America is headquartered in Peachtree City, Georgia, with sales, marketing and engineering operations in Farmington Hills, Mich. About Panasonic Corporation of North America Newark, NJ-based Panasonic Corporation of North America is committed to creating a better life and a better world by enabling its customers through innovations in Sustainable Energy, Immersive Entertainment, Integrated Supply Chains and Mobility Solutions. The company is the principal North American subsidiary of Osaka, Japan-based Panasonic Corporation. One of Interbrand's Top 100 Best Global Brands of 2023, Panasonic is a leading technology partner and integrator to businesses, government agencies and consumers across the region.

Read More

Server Virtualization

AELF Partners with ChainsAtlas to Pioneer Interoperability in Blockchain

PR Newswire | January 09, 2024

aelf is advancing cross-chain interoperability through a strategic partnership with ChainsAtlas. By utilising ChainsAtlas' innovative virtualisation technology, aelf will enable decentralised applications (dApps) from diverse blockchains to seamlessly migrate and integrate into the aelf blockchain, regardless of the dApps' smart contract specifications. This collaboration marks a significant step towards a globally interconnected and efficient blockchain ecosystem, breaking down the silos between blockchains. Khaniff Lau, Business Development Director at aelf, shares, "The strategic partnership with ChainsAtlas is a significant step towards realising our vision of a seamlessly interconnected blockchain world. With this integration, aelf is set to become a hub for cross-chain activities, enhancing our ability to support a wide array of dApps, digital assets, and Web2 apps. This collaboration is not just about technology integration; it's about shaping the future of how services and products on blockchains interact and operate in synergy." Jan Hanken, Co-founder of ChainsAtlas, says, "ChainsAtlas was always built to achieve two major goals: to make blockchain development accessible to a broad spectrum of developers and entrepreneurs and, along that path, to pave the way for a truly omnichain future." "By joining forces with aelf, we are bringing that visionary future much closer to reality. As we anticipate the influx of creativity from innovators taking their first steps into the world of Web3 on aelf, driven by ChainsAtlas technology, we are excited to see these groundbreaking ideas come to life," adds Hanken. The foundation for true cross-chain interoperability is being built as aelf integrates ChainsAtlas' Virtualization Unit (VU), enabling the aelf blockchain to accommodate both EVM and non-EVM digital assets. This cross-chain functionality is accomplished through ChainsAtlas' virtualisation technology, allowing aelf to interpret and execute smart contracts written in other languages supported by ChainsAtlas, while also establishing state transfer mechanisms that facilitate seamless data and asset flow between aelf and other blockchains. Through this partnership, aelf blockchain's capabilities will be enhanced as it is able to support a more comprehensive range of dApps and games, and developers from diverse coding backgrounds will now be empowered to build on aelf blockchain. This partnership will also foster increased engagement within the Web3 community as users can gain access to a more diverse range of digital assets on aelf. Looking ahead, the partnership between aelf and ChainsAtlas will play a pivotal role in advancing the evolution of aelf's sidechains by enabling simultaneous execution of program components across multiple VUs on different blockchains. About aelf aelf, a high-performance Layer 1 featuring multi-sidechain technology for unlimited scalability. aelf blockchain is designed to power the development of Web3 and support its continuous advancement into the future. Founded in 2017 with its global hub based in Singapore, aelf is one of the pioneers of the mainchain-sidechain architecture concept. Incorporating key foundational components, including AEDPoS, aelf's variation of a Delegated Proof-of-Stake (DPoS) consensus protocol; parallel processing; peer-to-peer (P2P) network communication; cross-chain bridges, and a dynamic side chain indexing mechanism, aelf delivers a highly efficient, safe, and modular ecosystem with high throughput, scalability, and interoperability. aelf facilitates the building, integrating, and deploying of smart contracts and decentralised apps (dApps) on its blockchain with its native C# software development kit (SDK) and SDKs in other languages, including Java, JS, Python, and Go. aelf's ecosystem also houses a range of dApps to support a flourishing blockchain network. aelf is committed to fostering innovation within its ecosystem and remains dedicated to driving the development of Web3 and the adoption of blockchain technology. About ChainsAtlas ChainsAtlas introduces a new approach to Web3 infrastructure, blending multiple blockchain technologies and smart contract features to create a unified, efficient processing network. Its core innovation lies in virtualization-enabled smart contracts, allowing consistent software operation across different blockchains. This approach enhances decentralized applications' complexity and reliability, promoting easier integration of existing software into the blockchain ecosystem. The team behind ChainsAtlas, driven by the transformative potential of blockchain, aims to foster global opportunities and equality. Their commitment to building on existing blockchain infrastructure marks a significant step towards a new phase in Web3, where advanced and reliable decentralized applications become the norm, setting new standards for the future of decentralized networks.

Read More

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Server Virtualization

Panasonic Automotive Introduces Neuron High-Performance Compute (HPC) to Advance to a Software-Defined Mobility Future

PR Newswire | January 09, 2024

Panasonic Automotive Systems Company of America, a tier-one automotive supplier and a division of Panasonic Corporation of North America, announced its High-Performance Compute (HPC) system. Named Neuron, this innovation addresses the rapidly evolving mobility needs anticipated for software-defined vehicle advancements. As vehicles become more software reliant, vehicle systems must support the extended software lifecycle by enabling software upgrades and prolonging the supporting hardware capability. Cars rely on hardware and software compute platforms to process, share, sense, and derive insights to handle functions for assisted driving. Panasonic Automotive's Neuron HPC allows for not only software updates and upgrades but also hardware upgrades across platform lifecycles. The Neuron HPC can aggregate multiple computing zones to reduce the cost, weight and integration complexity of the vehicle by removing redundant components. Panasonic Automotive's design supports effortless up-integration with high-performance and heavy data input processing capability. Importantly, the design is upgradeable, scalable and future-proof across today's evolving in-vehicle platforms. Neuron HPC Architecture & Design Panasonic Automotive's High Performance Compute architecture could reduce the number of distributed electronic control units (ECUs) by up to 80%1 – allowing for faster, lighter, cross-domain computing for real-time, cross-functional communications. The Neuron HPC design is suited for any mobility platform including internal combustion engine, hybrid, fuel cell or electric vehicles. "In collaboration with OEMs, Panasonic Automotive has designed and met some of the largest central compute platform challenges in the industry in order to make the driving experience evolve with technology," said Andrew Poliak, CTO, Panasonic Automotive Systems Company of America. "Neuron maximizes performance, safety and innovation over the entire ownership of the consumer's vehicle and enables OEMs with a future-proof SDV platform for ensuing generations of mobility needs." Key Systems, UX Features & Technical Benefits With a streamlined design, the Neuron HPC incorporates up-integration capability by consolidating multiple ECUs into one centralized nucleus to handle all levels of ADAS, chassis, body, and in-cabin infotainment features. About Panasonic Automotive Systems Company of America  Panasonic Automotive Systems Company of America is a division company of Panasonic Corporation of North America and is a leading global supplier of automotive infotainment and connectivity system solutions. Panasonic Automotive Systems Company of America acts as the North American affiliate of Panasonic Automotive Systems Co., Ltd., which coordinates global automotive. Panasonic Automotive Systems Company of America is headquartered in Peachtree City, Georgia, with sales, marketing and engineering operations in Farmington Hills, Mich. About Panasonic Corporation of North America Newark, NJ-based Panasonic Corporation of North America is committed to creating a better life and a better world by enabling its customers through innovations in Sustainable Energy, Immersive Entertainment, Integrated Supply Chains and Mobility Solutions. The company is the principal North American subsidiary of Osaka, Japan-based Panasonic Corporation. One of Interbrand's Top 100 Best Global Brands of 2023, Panasonic is a leading technology partner and integrator to businesses, government agencies and consumers across the region.

Read More

Server Virtualization

AELF Partners with ChainsAtlas to Pioneer Interoperability in Blockchain

PR Newswire | January 09, 2024

aelf is advancing cross-chain interoperability through a strategic partnership with ChainsAtlas. By utilising ChainsAtlas' innovative virtualisation technology, aelf will enable decentralised applications (dApps) from diverse blockchains to seamlessly migrate and integrate into the aelf blockchain, regardless of the dApps' smart contract specifications. This collaboration marks a significant step towards a globally interconnected and efficient blockchain ecosystem, breaking down the silos between blockchains. Khaniff Lau, Business Development Director at aelf, shares, "The strategic partnership with ChainsAtlas is a significant step towards realising our vision of a seamlessly interconnected blockchain world. With this integration, aelf is set to become a hub for cross-chain activities, enhancing our ability to support a wide array of dApps, digital assets, and Web2 apps. This collaboration is not just about technology integration; it's about shaping the future of how services and products on blockchains interact and operate in synergy." Jan Hanken, Co-founder of ChainsAtlas, says, "ChainsAtlas was always built to achieve two major goals: to make blockchain development accessible to a broad spectrum of developers and entrepreneurs and, along that path, to pave the way for a truly omnichain future." "By joining forces with aelf, we are bringing that visionary future much closer to reality. As we anticipate the influx of creativity from innovators taking their first steps into the world of Web3 on aelf, driven by ChainsAtlas technology, we are excited to see these groundbreaking ideas come to life," adds Hanken. The foundation for true cross-chain interoperability is being built as aelf integrates ChainsAtlas' Virtualization Unit (VU), enabling the aelf blockchain to accommodate both EVM and non-EVM digital assets. This cross-chain functionality is accomplished through ChainsAtlas' virtualisation technology, allowing aelf to interpret and execute smart contracts written in other languages supported by ChainsAtlas, while also establishing state transfer mechanisms that facilitate seamless data and asset flow between aelf and other blockchains. Through this partnership, aelf blockchain's capabilities will be enhanced as it is able to support a more comprehensive range of dApps and games, and developers from diverse coding backgrounds will now be empowered to build on aelf blockchain. This partnership will also foster increased engagement within the Web3 community as users can gain access to a more diverse range of digital assets on aelf. Looking ahead, the partnership between aelf and ChainsAtlas will play a pivotal role in advancing the evolution of aelf's sidechains by enabling simultaneous execution of program components across multiple VUs on different blockchains. About aelf aelf, a high-performance Layer 1 featuring multi-sidechain technology for unlimited scalability. aelf blockchain is designed to power the development of Web3 and support its continuous advancement into the future. Founded in 2017 with its global hub based in Singapore, aelf is one of the pioneers of the mainchain-sidechain architecture concept. Incorporating key foundational components, including AEDPoS, aelf's variation of a Delegated Proof-of-Stake (DPoS) consensus protocol; parallel processing; peer-to-peer (P2P) network communication; cross-chain bridges, and a dynamic side chain indexing mechanism, aelf delivers a highly efficient, safe, and modular ecosystem with high throughput, scalability, and interoperability. aelf facilitates the building, integrating, and deploying of smart contracts and decentralised apps (dApps) on its blockchain with its native C# software development kit (SDK) and SDKs in other languages, including Java, JS, Python, and Go. aelf's ecosystem also houses a range of dApps to support a flourishing blockchain network. aelf is committed to fostering innovation within its ecosystem and remains dedicated to driving the development of Web3 and the adoption of blockchain technology. About ChainsAtlas ChainsAtlas introduces a new approach to Web3 infrastructure, blending multiple blockchain technologies and smart contract features to create a unified, efficient processing network. Its core innovation lies in virtualization-enabled smart contracts, allowing consistent software operation across different blockchains. This approach enhances decentralized applications' complexity and reliability, promoting easier integration of existing software into the blockchain ecosystem. The team behind ChainsAtlas, driven by the transformative potential of blockchain, aims to foster global opportunities and equality. Their commitment to building on existing blockchain infrastructure marks a significant step towards a new phase in Web3, where advanced and reliable decentralized applications become the norm, setting new standards for the future of decentralized networks.

Read More

Events