VMware Acquires Apteligent For Mobile App Monitoring

Virtualization technology company VMware (VMW) has announced the acquisition of mobile app optimization firm Apteligent for an undisclosed sum.Apteligent will provide another piece in VMware’s metrics and monitoring SaaS offering suite to help enterprises transition fully to the cloud.The deal should be an excellent fit, as VMware was an investor in Apteligent, so integration and culture risks should be minimal.

Spotlight

Synack, Inc.

Synack combines the power of human ingenuity with the scalability of a security platform to give the enterprise an unparalleled adversarial perspective.

OTHER ARTICLES
Server Hypervisors

VMware Tanzu Kubernetes Grid Integrated: A Year in Review

Article | September 9, 2022

The modern application world is advancing at an unprecedented rate. However, the new possibilities these transformations make available don’t come without complexities. IT teams often find themselves under pressure to keep up with the speed of innovation. That’s why VMware provides a production-ready container platform for customers that aligns to upstream Kubernetes, VMware Tanzu Kubernetes Grid Integrated (formerly known as VMware Enterprise PKS). By working with VMware, customers can move at the speed their businesses demand without the headache of trying to run their operations alone. Our offerings help customers stay current with the open source community's innovations while having access to the support they need to move forward confidently. Many changes have been made to Tanzu Kubernetes Grid Integrated edition over the past year that are designed to help customers keep up with Kubernetes advancements, move faster, and enhance security. Kubernetes updates The latest version, Tanzu Kubernetes Grid Integrated 1.13, bumped to Kubernetes version 1.22 and removed beta APIs in favor of stable APIs that have since evolved from the betas. Over time, some APIs will evolve. Beta APIs typically evolve more often than stable APIs and should therefore be checked before updates occur. The APIs listed below will not be served with v1.22 as they have been replaced by more stable API versions: Beta versions of the ValidatingWebhookConfiguration and MutatingWebhookConfiguration API (the admissionregistration.k8s.io/v1beta1 API versions) The beta CustomResourceDefinition API (apiextensions.k8s.io/v1beta1) The beta APIService API (apiregistration.k8s.io/v1beta1) The beta TokenReview API (authentication.k8s.io/v1beta1) Beta API versions of SubjectAccessReview, LocalSubjectAccessReview, SelfSubjectAccessReview (API versions from authorization.k8s.io/v1beta1) The beta CertificateSigningRequest API (certificates.k8s.io/v1beta1) The beta Lease API (coordination.k8s.io/v1beta1) All beta Ingress APIs (the extensions/v1beta1 and networking.k8s.io/v1beta1 API versions) Containerd support Tanzu Kubernetes Grid Integrated helps customers eliminate lengthy deployment and management processes with on-demand provisioning, scaling, patching, and updating of Kubernetes clusters. To stay in alignment with the Kubernetes community, Containerd will be used as the default container runtime, although Docker can still be selected using the command-line interface (CLI) if needed. Networking Several updates have been made in regards to networking as well including support of Antrea and NSX-T enhancements. Antrea support With Tanzu Kubernetes Grid Integrated version 1.10 and later, customers can leverage Antrea on install or upgrade to use Kubernetes network policies. This enables enterprises to get the best of both worlds: access to the latest innovation from Antrea and world-class support from VMware. NSX-T enhancements NSX-T was integrated with Tanzu Kubernetes Grid Integrated to simplify container networking and increase security. This has been enhanced so customers can now choose the policy API as an option on a fresh installation of Tanzu Kubernetes Grid Integrated. This means that users will have access to new features available only through NSX-T policy API. This feature is currently in beta. In addition, more NSX-T and NSX Container Plug-in (NCP) configuration is possible through the network profiles. This operator command provides the benefit of being able to set configurations through the CLI, and this is persistent across lifecycle events. Storage enhancements We’ve made storage operations in our customers’ container native environments easier, too. Customers were seeking a simpler and more secure way to manage Container Storage Interface (CSI), and we introduced automatic installation of the vSphere CSI driver as a BOSH process beginning with Tanzu Kubernetes Grid Integrated 1.11. Also, as VCP will be deprecated, customers are advised to use the CSI driver. VCP-to-CSI migration is a part of Tanzu Kubernetes Grid Integrated 1.12 and is designed to help customers move forward faster. Enhanced security Implementing new technologies provides users with new capabilities, but it can also lead to new security vulnerabilities if not done correctly. VMware’s goal is to help customers move forward with ease and the confidence of knowing that enhancements don’t compromise core security needs. CIS benchmarks This year, Tanzu Kubernetes Grid Integrated continued to see improvements that help meet today’s high security standards. Meeting the Center for Internet Security (CIS) benchmarks standards is vital for Tanzu Kubernetes Grid Integrated. In recent Tanzu Kubernetes Grid Integrated releases, a few Kubernetes-related settings have been adjusted to ensure compliance with CIS requirements: Kube-apiserver with --kubelet-certificate-authority settings (v1.12) Kube-apiserver with --authorization-mode argument includes Node (v1.12) Kube-apiserver with proper --audit-log-maxage argument (v1.13) Kube-apiserver with proper --audit-log-maxbackup argument (v1.13) Kube-apiserver with proper --audit-log-maxsize argument (v1.13) Certificate rotations Tanzu Kubernetes Grid Integrated secures all communication between its control plane components and the Kubernetes clusters it manages, using TLS validated by certificates. The certificate rotations have been simplified in recent releases. Customers can now list and simply update certificates on a cluster-by-cluster basis through the “tkgi rotate-certificates” command. The multistep, manual process was replaced with a single CLI command to rotate NSX-T certificates (available since Tanzu Kubernetes Grid Integrated 1.10) and cluster-by-cluster certificates (available since Tanzu Kubernetes Grid Integrated 1.12). Hardening of images Tanzu Kubernetes Grid Integrated keeps OS images, container base images, and software library versions updated to remediate the CVEs reported by customers and in the industry. It also continues to use the latest Ubuntu Xenial Stemcell latest versions for node virtual machines. With recent releases and patch versions, the version of dockerd, containerd, runc, telegraf, nfs-utils had been bumped to the latest stable and secure versions as well. By using Harbor as a private registry management service, customers could also leverage the built-in vulnerability scan features to discover the application images CVEs. VMware is dedicated to supporting customers with production readiness by enhancing the user experience. Tanzu Kubernetes Grid Integrated Edition has stayed up to date with the Kubernetes community and provides customers with the support and resources they need to innovate rapidly.

Read More
Virtual Desktop Tools, Server Hypervisors

Rising Importance of Network Virtualization

Article | June 8, 2023

Network virtualization combines network resources to integrate several physical networks, segment a network, or construct software networks among VMs. IT teams can construct numerous separate virtual networks using network virtualization. Virtual networks can be added and scaled without changing hardware. Teams can start up logical networks more rapidly in response to business needs using network virtualization. This adaptability improves service delivery, efficiency, and control. Importance of Network Virtualisation Network virtualization entails developing new rules for the delivery of network services. This involves software-defined data centers (SDDC), cloud computing, and edge computing. Virtualization assists in the transformation of networks from rigid, wasteful, and static to optimized, agile, and dynamic. To ensure agility and speed, modern virtual networks must keep up with the needs of cloud-hosted, decentralized applications while addressing cyberthreats. You can deploy and upgrade programs in minutes thanks to network virtualization. This eliminates the need to spend time setting up the infrastructure to accommodate the new applications. What is the Process of Network Virtualization? Several network functions that were previously done manually on hardware are now automated through network virtualisation. Network managers can construct, maintain, and provide networks programmatically in software while employing the hardware as a packet-forwarding backplane. Physical network resources, such as virtual private networks (VPNs), load balancing, firewalling, routing, and switching, are pooled and supplied in software. To do this, you merely require Internet Protocol (IP) packet forwarding from the hardware or physical network. Individual workloads, such as virtual machines, can access network services that have been distributed to a virtual layer. There are several kinds of virtual machines accessible. The finest virtual machines enable network administrators to access all parts of a network from a single point of access. Closing Lines Network virtualization will remain a critical component in both business and carrier network architectures. Network virtualization projects in the future will inevitably incorporate zero trust, automation, and edge and cloud computing.

Read More
Virtual Desktop Strategies

VMware NSX 3.2 Delivers New, Advanced Security Capabilities

Article | July 26, 2022

It’s an impactful release focused on significant NSX Security enhancements Putting a hard shell around a soft core is not a recipe for success in security, but somehow legacy security architectures for application protection have often looked exactly like that: a hard perimeter firewall layer for an application infrastructure that was fundamentally not built with security as a primary concern. VMware NSX Distributed Firewall pioneered the micro-segmentation concept for granular access controls for cloud applications with the initial launch of the product in 2013. The promise of Zero Trust security for applications, the simplicity of deployment of the solution, and the ease of achieving internal security objectives made NSX an instant success for security-sensitive customers. Our newest release — NSX-T 3.2 — establishes a new marker for securing application infrastructure by introducing significant new features to identify and respond to malware and ransomware attacks in the network, to enhance user identification and L7 application identification capabilities, and, at the same time, to simplify deployment of the product for our customers. Modern day security teams need to secure mission-critical infrastructure from both external and internal attacks. By providing unprecedented threat visibility leveraging IDS, NTA, and Network Detection and Response (NDR) capabilities along with granular controls leveraging L4-L7 Firewall, IPS, and Malware Prevention capabilities, NSX 3.2 delivers an incredible security solution for our customers“ Umesh Mahajan, SVP, GM (Networking and Security Business Unit) Distributed Advanced Threat Prevention (ATP) Attackers often use multiple sophisticated techniques to penetrate the network, move laterally within the network in a stealthy manner, and exfiltrate critical data at an appropriate time. Micro-segmentation solutions focused solely on access control can reduce the attack surface — but cannot provide the detection and prevention technologies needed to thwart modern attacks. NSX-T 3.2 introduces several new capabilities focused on detection and prevention of attacks inside the network. Of critical note is that these advanced security solutions do not need network taps, separate monitoring networks, or agents inside each and every workload. Distributed Malware Prevention Lastline’s highly reputed dynamic malware technology is now integrated with NSX Distributed Firewall to deliver an industry-first Distributed Malware Prevention solution. Leveraging the integration with Lastline, a Distributed Firewall embedded within the hypervisor kernel can now identify both “known malicious” as well as “zero day” malware Distributed Behavioral IDS Whereas earlier versions of NSX Distributed IDPS (Intrusion Detection and Prevention System) delivered primarily signature-based detection of intrusions, NSX 3.2 introduces “behavioral” intrusion detection capabilities as well. Even if specific IDS signatures are not triggered, this capability helps customers know whether a workload is seeing any behavioral anomalies, like DNS tunneling or beaconing, for example, that could be a cause for concern. Network Traffic Analysis (NTA) For customers interested in baselining network-wide behavior and identifying anomalous behavior at the aggregated network level, NSX-T 3.2 introduces Distributed Network Traffic Analysis (NTA). Network-wide anomalies like lateral movement, suspicious RDP traffic, and malicious interactions with the Active Directory server, for example, can alert security teams about attacks underway and help them take quick remediation actions. Network Detection and Response (NDR) Alert overload, and resulting fatigue, is a real challenge among security teams. Leveraging advanced AI/ML techniques, the NSX-T 3.2 Network Detection and Response solution consolidates security IOCs from different detection systems like IDS, NTA, malware detection. etc., to provide a ”campaign view” that shows specific attacks in play at that point in time. MITRE ATT&CK visualization helps customers see the specific stage in the kill chain of individual attacks, and the ”time sequence” view helps understand the sequence of events that contributed to the attack on the network. Key Firewall Enhancements While delivering new Advanced Threat Prevention capabilities is one key emphasis for the NSX-T 3.2 release, providing meaningful enhancements for core firewalling capabilities is an equally critical area of innovation. Distributed Firewall for VDS Switchports While NSX-T has thus far supported workloads connected to both overlay-based N-VDS switchports as well as VLAN-based switchports, customers had to move the VLAN switchports from VDS to N-VDS before a Distributed Firewall could be enforced. With NSX-T 3.2, native VLAN DVPGs are supported as-is, without having to move to N-VDS. Effectively, Distributed Security can be achieved in a completely seamless manner without having to modify any networking constructs. Distributed Firewall workflows in vCenter With NSX-T 3.2, we are introducing the ability to create and modify Distributed Firewall rules natively within vCenter. For small- to medium-sized VMware customers, this feature simplifies the user experience by eliminating the need to leverage a separate NSX Manager interface. Advanced User Identification for Distributed and Gateway Firewalls NSX supported user identity-based access control in earlier releases. With NSX-T 3.2, we’re introducing the ability to directly connect to Microsoft Active Directory to support user identity mapping. In addition, for customers who do not use Active Directory for user authentication, NSX also supports VMware vRealize LogInsight as an additional method to carry out user identity mapping. This feature enhancement is applicable for both NSX Distributed Firewall as well as NSX Gateway Firewall. Enhanced L7 Application Identification for Distributed and Gateway Firewalls NSX supported Layer-7 application identification-based access control in earlier releases. With NSX-T 3.2, we are enhancing the signature set to about 750 applications. While several perimeter firewall vendors claim a larger set of Layer-7 application signatures, they focus mostly on internet application identification (like Facebook, for example). Our focus with NSX at this time is on internal applications hosted by enterprises. This feature enhancement is applicable for both NSX Distributed Firewall as well as Gateway Firewalls. NSX Intelligence NSX Intelligence is geared towards delivering unprecedented visibility for all application traffic inside the network and enabling customers to create micro-segmentation policies to reduce the attack surface. It has a processing pipeline that de-dups, aggregates, and correlates East-West traffic to deliver in-depth visibility. Scalability enhancements for NSX Intelligence As application infrastructure grows rapidly, it is vital that one’s security analytics platform can grow with it. With the new release, we have rearchitected the application platform upon which NSX Intelligence runs — moving from a stand-alone appliance to a containerized micro-service architecture powered by Kubernetes. This architectural change future-proofs the Intelligence data lake and allows us to eventually scale out our solution to n-node Kubernetes clusters. Large Enterprise customers that need visibility for application traffic can confidently deploy NSX Intelligence and leverage the enhanced scale it supports. NSX Gateway Firewall While NSX Distributed Firewall focuses on east-west controls within the network, NSX Gateway Firewall is used for securing ingress and egress traffic into and out of a zone. Gateway Firewall Malware Detection NSX Gateway Firewall in the 3.2 release received significant Advanced Threat Detection capabilities. Gateway Firewall can now identify both known as well as zero-day malware ingressing or egressing the network. This new capability is based on the Gateway Firewall integration with Lastline’s highly reputed dynamic network sandbox technology. Gateway Firewall URL Filtering Internal users and applications reaching out to malicious websites is a huge security risk that must be addressed. In addition, enterprises need to limit internet access to comply with corporate internet usage policies. NSX Gateway Firewall in 3.2 introduces the capability to restrict access to internet sites. Access can be limited based on either the category the URL belongs to, or the “reputation” of the URL. The URL to category and reputation mapping is constantly updated by VMware so customer intent is enforced automatically even after many changes in the internet sites themselves.

Read More
Virtual Desktop Tools, Virtual Desktop Strategies

VM Applications for Software Development and Secure Testing

Article | June 8, 2023

Contents 1. Introduction 2. Software Development and Secure Testing 3. Using VMs in Software Development and Secure Testing 4. Conclusion 1. Introduction “Testing is an infinite process of comparing the invisible to the ambiguous in order to avoid the unthinkable happening to the anonymous.” —James Bach. Testing software is crucial for identifying and fixing security vulnerabilities. However, meeting quality standards for functionality and performance does not guarantee security. Thus, software testing nowadays is a must to identify and address application security vulnerabilities to maintain the following: Security of data history, databases, information, and servers Customers’ integrity and trust Web application protection from future attacks VMs provide a flexible and isolated environment for software development and security testing. They offer easy replication of complex configurations and testing scenarios, allowing efficient issue resolution. VMs also provide secure testing by isolating applications from the host system and enabling a reset to a previous state. In addition, they facilitate DevOps practices and streamline the development workflow. 2. Software Development and Secure Testing Software Secure Testing: The Approach The following approaches must be considered while preparing and planning for security tests: Architecture Study and Analysis: Understand whether the software meets the necessary requirements. Threat Classification: List all potential threats and risk factors that must be tested. Test Planning: Run the tests based on the identified threats, vulnerabilities, and security risks. Testing Tool Identification: For software security testing tools for web applications, the developer must identify the relevant security tools to test the software for specific use cases. Test-Case Execution: After performing a security test, the developer should fix it using any suitable open-source code or manually. Reports: Prepare a detailed test report of the security tests performed, containing a list of the vulnerabilities, threats, and issues resolved and the ones that are still pending. Ensuring the security of an application that handles essential functions is paramount. This may involve safeguarding databases against malicious attacks or implementing fraud detection mechanisms for incoming leads before integrating them into the platform. Maintaining security is crucial throughout the software development life cycle (SDLC) and must be at the forefront of developers' minds while executing the software's requirements. With consistent effort, the SDLC pipeline addresses security issues before deployment, reducing the risk of discovering application vulnerabilities while minimizing the damage they could cause. A secure SDLC makes developers responsible for critical security. Developers need to be aware of potential security concerns at each step of the process. This requires integrating security into the SDLC in ways that were not needed before. As anyone can potentially access source code, coding with potential vulnerabilities in mind is essential. As such, having a robust and secure SDLC process is critical to ensuring applications are not subject to attacks by hackers. 3. Using VMs in Software Development and Secure Testing: Snapshotting: Snapshotting allows developers to capture a VM's state at a specific point in time and restore it later. This feature is helpful for debugging and enables developers to roll back to a previous state when an error occurs. A virtual machine provides several operations for creating and managing snapshots and snapshot chains. These operations let users create snapshots, revert to any snapshots in the chain, and remove snapshots. In addition, extensive snapshot trees can be created to streamline the flow. Virtual Networking: It allows virtual machines to be connected to virtual networks that simulate complex network topologies, allowing developers to test their applications in different network environments. This allows expanding data centers to cover multiple physical locations, gaining access to a plethora of more efficient options. This empowers them to effortlessly modify the network as per changing requirements without any additional hardware. Moreover, providing the network for specific applications and needs offers greater flexibility. Additionally, it enables workloads to be moved seamlessly across the network infrastructure without compromising on service, security, or availability. Resource Allocation: VMs can be configured with specific resource allocations such as CPU, RAM, and storage, allowing developers to test their applications under different resource constraints. Maintaining a 1:1 ratio between the virtual machine processor and its host or core is highly recommended. It's crucial to refrain from over-subscribing virtual machine processors to a single core, as this could lead to stalled or delayed events, causing significant frustration and dissatisfaction among users. However, it is essential to acknowledge that IT administrators sometimes overallocate virtual machine processors. In such cases, a practical approach is to start with a 2:1 ratio and gradually move towards 4:1, 8:1, 12:1, and so on while bringing virtual allocation into IT infrastructure. This approach ensures a safe and seamless transition towards optimized virtual resource allocation. Containerization within VMs: Containerization within VMs provides an additional layer of isolation and security for applications. Enterprises are finding new use cases for VMs to utilize their in-house and cloud infrastructure to support heavy-duty application and networking workloads. This will also have a positive impact on the environment. DevOps teams use containerization with virtualization to improve software development flexibility. Containers allow multiple apps to run in one container with the necessary components, such as code, system tools, and libraries. For complex applications, both virtual machines and containers are used together. However, while containers are used for the front-end and middleware, VMs are used for the back-end. VM Templates: VM templates are pre-configured virtual machines that can be used as a base for creating new virtual machines, making it easier to set up development and testing environments. A VM template is an image of a virtual machine that serves as a master copy. It includes VM disks, virtual devices, and settings. By using a VM template, cloning a virtual machine multiple times can be achieved. When you clone a VM from a template, the clones are independent and not linked to the template. VM templates are handy when a large number of similar VMs need to be deployed. They preserve VM consistency. To edit a template, convert it to a VM, make the necessary changes, and then convert the edited VM back into a new template. Remote Access: VMs can be accessed remotely, allowing developers and testers to collaborate more effectively from anywhere worldwide. To manage a virtual machine, follow these steps: enable remote access, connect to the virtual machine, and then access the VNC or serial console. Once connected, full permission to manage the virtual machine is granted with the user's approval. Remote access provides a secure way to access VMs, as connections can be encrypted and authenticated to prevent unauthorized access. Additionally, remote access allows for easier management of VMs, as administrators can monitor and control virtual machines from a central location. DevOps Integration: DevOps is a collection of practices, principles, and tools that allow a team to release software quickly and efficiently. Virtualization is vital in DevOps when developing intricate cloud, API, and SOA systems. Virtual machines enable teams to simulate environments for creating, testing, and launching code, ultimately preserving computing resources. While commencing a bug search at the API layer, teams find that virtual machines are suitable for test-driven development (TDD). Virtualization providers handle updates, freeing up DevOps teams, to focus on other areas and increasing productivity by 50 –60%. In addition, VMs allow for simultaneous testing of multiple release and patch levels, improving product compatibility and interoperability. 4. Conclusion The outlook for virtual machine applications is highly promising in the development and testing fields. With the increasing complexity of development and testing processes, VMs can significantly simplify and streamline these operations. In the future, VMs are expected to become even more versatile and potent, providing developers and testers with a broader range of tools and capabilities to facilitate the development process. One potential future development is integrating machine learning and artificial intelligence into VMs. This would enable VMs to automate various tasks, optimize the allocation of resources, and generate recommendations based on performance data. Moreover, VMs may become more agile and lightweight, allowing developers and testers to spin up and spin down instances with greater efficiency. The future of VM applications for software development and security testing looks bright, with continued innovation and development expected to provide developers and testers with even more powerful and flexible tools to improve the software development process.

Read More

Spotlight

Synack, Inc.

Synack combines the power of human ingenuity with the scalability of a security platform to give the enterprise an unparalleled adversarial perspective.

Related News

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Backup and Disaster Recovery

Minimize the Cost and Downtime of Disaster With Scale Computing's Business Continuity/Disaster Recovery Planning Service

PR Newswire | October 25, 2023

Scale Computing, a market leader in edge computing, virtualization, and hyperconverged solutions, today announced its Business Continuity/Disaster Recovery (BCDR) Planning Service, designed to help organizations establish a comprehensive, regulated plan for responding to unforeseen downtime. The service provides Scale Computing customers and partners with the tools, guidance, and resources to create a playbook for data backup and recovery, enabling businesses to endure a disaster scenario with minimal loss. Scale Computing also recently announced that it is a finalist for the Business Continuity/Disaster Recovery Project of the Year in the 2023 SDC Awards for its work with Austrian managed service provider GiGaNet and its long-time partner the Zillertaler Gletscherbahn group. Voting for the SDC Awards is open at sdcawards.com/vote until November 10th, 2023. Data breaches are one of the biggest and most costly contributors to downtime for businesses. In 2023, the average cost of a data breach globally reached an all-time high of $4.45 million, a 15.3% increase from 2020. Simultaneously, the average length of business disruption following a ransomware attack in the United States reached 24 days last year, up 60% from just two years prior — a significant increase when downtime costs exceed $300,000 per hour for over 90% of mid-sized and large enterprises. For more than half of those businesses, the hourly outage costs range from $1 million to over $5 million. Recovery from an outage adds additional expense from which many enterprises are unable to bounce back. "Disaster can strike at any time, and every organization needs a consistently regulated playbook for how the business will respond — from action plans to recovery plans for bringing online the mission-critical servers businesses depend on," said Jeff Ready, CEO and co-founder, Scale Computing. "Knowing what systems need to be protected, planning for the ability to recover them, and having a full action plan for recovery should be at the forefront of every IT department's agenda, at the beginning of any infrastructure addition. With Scale Computing Platform, the plan for disaster recovery starts before equipment is even put into production, so IT leaders have a plan in place from day one that they can enact to ensure their business stays up and running, with minimal loss, should disaster strike. Our Business Continuity/Disaster Recovery Planning Service enables businesses to proactively classify systems based on their importance and implement a robust action plan, ensuring that our customers' and partners' critical systems are protected, validated, tested, and ready for recovery at any time." Whether a minor data loss or a business-wide shutdown, having a well-defined business continuity strategy is crucial to minimize financial impact, ensure continuous employee productivity, meet compliance and regulatory requirements, decrease liability obligations, reduce downtime, and minimize the risk of negative exposure. Scale Computing's BCDR Planning Service includes planning, deployment, documentation creation, and disaster recovery testing, covering every aspect to keep businesses prepared and resilient. The service is offered to Scale Computing Platform customers, which brings simplicity, high availability, and scalability together to replace existing infrastructure for running virtual machines with an easy-to-manage, fully integrated platform that allows organizations to run applications regardless of hardware requirements. About Scale Computing Scale Computing is a leader in edge computing, virtualization, and hyperconverged solutions. Using patented HyperCore™ technology, Scale Computing Platform automatically identifies, mitigates, and corrects infrastructure problems in real-time, enabling applications to achieve maximum uptime, even when local IT resources and staff are scarce. Edge Computing is the fastest-growing area of IT infrastructure, and industry analysts have named Scale Computing an outperformer and leader in the space, including being named the #1 edge computing vendor by CRN. Scale Computing's products are sold by thousands of value-added resellers, integrators, and service providers worldwide.

Read More

Server Virtualization, VMware

StorMagic Introduces Edge Control Software to Simplify SvSAN Monitoring and Management

Business Wire | October 18, 2023

StorMagic®, solving the world’s edge data problems, today announced the immediate availability of a new Software as a Service (SaaS) tool that allows users to easily monitor and manage all of their SvSAN clusters around the world. StorMagic Edge Control simplifies the process and tools required for day-to-day SvSAN cluster administration. SvSAN customers with multiple locations can significantly reduce the time spent managing their edge sites, whether they are using VMware, Microsoft or KVM hypervisors. “ESG research shows increasing demand for data storage at the edge which fuels an increased need for monitoring solutions that can help address the complexity of storage at the edge,” said Scott Sinclair, practice director at Enterprise Strategy Group. “SvSAN customers can greatly benefit by adding StorMagic Edge Control into their toolkits; the dashboard views and list formats will make centralized data management much easier and more accessible.” Edge Control delivers centralized administration for SvSAN environments of all sizes. Customers can now manage all SvSAN deployments in any location from a single pane of glass. Dashboard and system views provide a fast but comprehensive status of all of their virtual storage appliances (VSAs), allowing them to keep their environment up-to-date more easily and react faster as needed. “StorMagic customers of any size can now manage their entire SvSAN estate, whether it’s one site or thousands of sites around the world,” said Bruce Kornfeld, chief marketing and product officer, StorMagic. “Edge Control is particularly interesting for customers who are considering switching from VMware to Microsoft or Linux KVM because SvSAN and Edge Control are both hypervisor agnostic.” Pricing and Availability Edge Control version 1.0 is available today from StorMagic. SvSAN customers can download and begin using the software immediately, free of charge. About StorMagic StorMagic is solving the world’s edge data problems. We help organizations store, protect and use data at and from the edge. StorMagic’s solutions ensure data is always protected and available, no matter the type or location, to provide value anytime, anywhere. StorMagic’s storage and security products are flexible, robust, easy to use and cost-effective, without sacrificing enterprise-class features, for organizations with one to thousands of sites.

Read More

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Backup and Disaster Recovery

Minimize the Cost and Downtime of Disaster With Scale Computing's Business Continuity/Disaster Recovery Planning Service

PR Newswire | October 25, 2023

Scale Computing, a market leader in edge computing, virtualization, and hyperconverged solutions, today announced its Business Continuity/Disaster Recovery (BCDR) Planning Service, designed to help organizations establish a comprehensive, regulated plan for responding to unforeseen downtime. The service provides Scale Computing customers and partners with the tools, guidance, and resources to create a playbook for data backup and recovery, enabling businesses to endure a disaster scenario with minimal loss. Scale Computing also recently announced that it is a finalist for the Business Continuity/Disaster Recovery Project of the Year in the 2023 SDC Awards for its work with Austrian managed service provider GiGaNet and its long-time partner the Zillertaler Gletscherbahn group. Voting for the SDC Awards is open at sdcawards.com/vote until November 10th, 2023. Data breaches are one of the biggest and most costly contributors to downtime for businesses. In 2023, the average cost of a data breach globally reached an all-time high of $4.45 million, a 15.3% increase from 2020. Simultaneously, the average length of business disruption following a ransomware attack in the United States reached 24 days last year, up 60% from just two years prior — a significant increase when downtime costs exceed $300,000 per hour for over 90% of mid-sized and large enterprises. For more than half of those businesses, the hourly outage costs range from $1 million to over $5 million. Recovery from an outage adds additional expense from which many enterprises are unable to bounce back. "Disaster can strike at any time, and every organization needs a consistently regulated playbook for how the business will respond — from action plans to recovery plans for bringing online the mission-critical servers businesses depend on," said Jeff Ready, CEO and co-founder, Scale Computing. "Knowing what systems need to be protected, planning for the ability to recover them, and having a full action plan for recovery should be at the forefront of every IT department's agenda, at the beginning of any infrastructure addition. With Scale Computing Platform, the plan for disaster recovery starts before equipment is even put into production, so IT leaders have a plan in place from day one that they can enact to ensure their business stays up and running, with minimal loss, should disaster strike. Our Business Continuity/Disaster Recovery Planning Service enables businesses to proactively classify systems based on their importance and implement a robust action plan, ensuring that our customers' and partners' critical systems are protected, validated, tested, and ready for recovery at any time." Whether a minor data loss or a business-wide shutdown, having a well-defined business continuity strategy is crucial to minimize financial impact, ensure continuous employee productivity, meet compliance and regulatory requirements, decrease liability obligations, reduce downtime, and minimize the risk of negative exposure. Scale Computing's BCDR Planning Service includes planning, deployment, documentation creation, and disaster recovery testing, covering every aspect to keep businesses prepared and resilient. The service is offered to Scale Computing Platform customers, which brings simplicity, high availability, and scalability together to replace existing infrastructure for running virtual machines with an easy-to-manage, fully integrated platform that allows organizations to run applications regardless of hardware requirements. About Scale Computing Scale Computing is a leader in edge computing, virtualization, and hyperconverged solutions. Using patented HyperCore™ technology, Scale Computing Platform automatically identifies, mitigates, and corrects infrastructure problems in real-time, enabling applications to achieve maximum uptime, even when local IT resources and staff are scarce. Edge Computing is the fastest-growing area of IT infrastructure, and industry analysts have named Scale Computing an outperformer and leader in the space, including being named the #1 edge computing vendor by CRN. Scale Computing's products are sold by thousands of value-added resellers, integrators, and service providers worldwide.

Read More

Server Virtualization, VMware

StorMagic Introduces Edge Control Software to Simplify SvSAN Monitoring and Management

Business Wire | October 18, 2023

StorMagic®, solving the world’s edge data problems, today announced the immediate availability of a new Software as a Service (SaaS) tool that allows users to easily monitor and manage all of their SvSAN clusters around the world. StorMagic Edge Control simplifies the process and tools required for day-to-day SvSAN cluster administration. SvSAN customers with multiple locations can significantly reduce the time spent managing their edge sites, whether they are using VMware, Microsoft or KVM hypervisors. “ESG research shows increasing demand for data storage at the edge which fuels an increased need for monitoring solutions that can help address the complexity of storage at the edge,” said Scott Sinclair, practice director at Enterprise Strategy Group. “SvSAN customers can greatly benefit by adding StorMagic Edge Control into their toolkits; the dashboard views and list formats will make centralized data management much easier and more accessible.” Edge Control delivers centralized administration for SvSAN environments of all sizes. Customers can now manage all SvSAN deployments in any location from a single pane of glass. Dashboard and system views provide a fast but comprehensive status of all of their virtual storage appliances (VSAs), allowing them to keep their environment up-to-date more easily and react faster as needed. “StorMagic customers of any size can now manage their entire SvSAN estate, whether it’s one site or thousands of sites around the world,” said Bruce Kornfeld, chief marketing and product officer, StorMagic. “Edge Control is particularly interesting for customers who are considering switching from VMware to Microsoft or Linux KVM because SvSAN and Edge Control are both hypervisor agnostic.” Pricing and Availability Edge Control version 1.0 is available today from StorMagic. SvSAN customers can download and begin using the software immediately, free of charge. About StorMagic StorMagic is solving the world’s edge data problems. We help organizations store, protect and use data at and from the edge. StorMagic’s solutions ensure data is always protected and available, no matter the type or location, to provide value anytime, anywhere. StorMagic’s storage and security products are flexible, robust, easy to use and cost-effective, without sacrificing enterprise-class features, for organizations with one to thousands of sites.

Read More

Events