WINDOWS SERVER 2016

Windows Server 2016 provides the private and hybrid cloud capabilities you need to deliver rapidly on business requirements. At the heart of the Microsoft Cloud Platform, Windows Server brings Microsoft’s experience delivering global-scale cloud services into your infrastructure. Windows Server 2016 provides a wide range of new and enhanced features and capabilities spanning server virtualization, storage, software-defined networking, server management and automation, web and application platform, access and information protection, virtual desktop infrastructure, and more.

Spotlight

NexusTek

Thousands of small and medium-sized businesses depend on NexusTek to manage and optimize their IT and cloud environments for business continuity, productivity, operational efficiency and cost-effectiveness. With an all-encompassing services portfolio, infrastructure, high-touch personal attention and IT consulting expertise, NexusTek delivers true end-to-end, outsourced IT management to organizations nationwide.

OTHER ARTICLES
Virtual Desktop Strategies

Metasploitable: A Platform for Ethical Hacking and Penetration Testing

Article | July 26, 2022

Contents 1. Overview 2. Ethical Hacking and Penetration Testing 3. Metasploit Penetration Test 4. Why Choose Metasploit Framework for your Business? 5. Closing remarks 1. Overview Metasploitable refers to an intentionally vulnerable virtual machine that enables the learning and practice of Metasploit. Metasploit is one of the best penetration testing frameworks that helps businesses discover and shore up their systems' vulnerabilities before hackers exploit them. Security engineers use Metasploit as a penetration testing system and a development platform that allows the creation of security tools and exploits. Metasploit's various user interfaces, libraries, tools, and modules allow users to configure an exploit module, pair it with a payload, point it at a target, and launch it at the target system. In addition, Metasploit's extensive database houses hundreds of exploits and several payload options. 2. Ethical Hacking and Penetration Testing An ethical hacker is one who works within a security framework and checks for bugs that a malicious hacker might use to exploit networks. They use their experience and skills to render the cyber environment. To protect the infrastructure from the threat that hackers pose, ethical hacking is essential. The main purpose of an ethical hacking service is to report and assess the safety of the targeted systems and networks for the owner. Ethical hacking is performed with penetration test techniques to evaluate security loopholes. There are many techniques used to hack information, such as – Information gathering Vulnerability scanning Exploitation Test analysis Ethical hacking involves automatic methods. The hacking process without automated software is inefficient and time-consuming. There are several tools and methods that can be used for ethical hacking and penetration testing. The Metasploit framework eases the effort to exploit vulnerabilities in networks, operating systems, and applications and generates new exploits for new or unknown vulnerabilities. 3. Metasploit Penetration Test Reconnaissance: Integrate Metasploit with various reconnaissance tools to find the vulnerable spot in the system. Threat Modeling and Vulnerability Identification: Once a weakness is identified, choose an exploit and payload for penetration. Exploitation: The payload gets executed at the target if the exploit, a tool used to take advantage of system weakness, is successful, and the user gets a shell for interacting with the payload (a shellcode is a small piece of code used as the payload).The most popular payload, a set of malicious codes to attack Windows systems, is Meterpreter, an in-memory-only interactive shell. (Meterpreter is a Metasploit attack payload that provides an interactive shell for the attacker to explore the target machine and execute code.)Other payloads are: Static payloads (it enables port forwarding and communications between networks) Dynamic payloads (to evade antivirus software, it allows testers to generate unique payloads) Command shell payloads (enables users to run scripts or commands against a host) Post-Exploitation: Metasploit offers various exploitation tools for privilege escalation, packet sniffing, keyloggers, screen capture, and pivoting tools once on the target machine. Resolution and Re-Testing: Users set up a persistent backdoor if the target machine gets rebooted. These available features in Metasploit make it easy to configure as per the user's requirements. 4. Why Choose Metasploit Framework for your Business? Significant advantages of the Metasploit Framework are discussed below: Open-source: Metasploit Framework is actively developed as open-source software, so most companies prefer this to grow their businesses. Easy usage: It is very easy to use, defining an easy-naming conversation with the commands. This also facilitates the building of an extensive penetration test of the network. GUI Environment: It mainly provides third-party instances that are friendly. These interfaces ease the penetration testing projects by providing the facilities with services such as button clicks, over-the-fly vulnerability management, and easy-to-shift workspaces, among others. Cleaner Exits: Metasploit can cleanly exit without detection, even if the target system does not restart after a penetration test. Additionally, it offers various options for maintaining persistent access to the target system. Easy Switching Between Payloads: Metasploit allows testers to change payloads with the 'setpayload' command easily. It offers flexibility for system penetration through shell-based access or meterpreter. 5. Closing remarks From DevSecOps experts to hackers, everyone uses the Ruby-based open-source framework Metasploit, which allows testing via command-line alterations or GUI. Metasploitable is a vulnerable virtual machine ideally used for ethical hacking and penetration testing, in VM security. One trend likely to impact the future of Metasploitable is the increasing use of cloud-based environments for testing and production. It is possible that Metasploitable could be adapted to work in cloud environments or that new tools will be developed specifically for cloud-based penetration testing. Another trend that may impact the future of Metasploitable is the growing importance of automation in security testing. Thus, Metasploitable could be adapted to include more automation features. The future of Metasploitable looks bright as it continues to be a valuable tool for security professionals and enthusiasts. As the security landscape continues to evolve, it will be interesting to see how Metasploitable adapts to meet the community's changing needs.

Read More
VMware, Vsphere, Hyper-V

ProtonVPN iOS app now supports the OpenVPN protocol

Article | May 2, 2023

Your ProtonVPN iOS app is now better equipped to fight censorship and offers more flexible connection options with the launch of OpenVPN for iOS. The OpenVPN protocol is one of the best VPN protocols because of its flexibility, security, and because it is more resistant to blocks. You now have the option to switch between the faster IKEv2 protocol and the more stable and censorship-resistant OpenVPN protocol.

Read More
Virtual Desktop Tools, Virtual Desktop Strategies

The Business Benefits of Embracing Virtualization on Virtual Machines

Article | June 8, 2023

Neglecting virtualization on VMs hampers productivity of firms. Operations become complex and resource usage is suboptimal. Leverage virtualization to empower with enhanced efficiency and scalability. Contents 1. Introduction 2. Types of Virtualization on VMs 2.1 Server virtualization 2.2 Storage virtualization 2.3 Network virtualization 2.3.1 Software-defined networking 2.3.2 Network function virtualization 2.4 Data virtualization 2.5 Application virtualization 2.6 Desktop virtualization 3. Impact of Virtualized VMs on Business Enterprises 3.1 Virtualization as a Game-Changer for Business Models 3.2 Evaluating IT Infrastructure Reformation 3.3 Virtualization Impact on Business Agility 4. How can Businesses Scale ROI with Adoption of Virtualization in Virtual Machines? 5. Risks and Challenges of Virtual Machines in the Cloud 5.1 Resource Distribution: 5.2 VM Sprawl: 5.3 Backward Compatibility 5.4 Conditional Network Monitoring 5.5 Interoperability: 6. Overcoming Roadblocks: Best Practices for Successful Execution of VMs 6.1 Unlocking the Power of Resource Distribution: 6.2 Effective techniques for Avoiding VM Sprawl: 6.3 Backward Compatibility: A Comprehensive Solution: 6.4 Performance Metrics: 6.5 Solutions for Interoperability in a Connected World: 7. Five Leading Providers for Virtualization of VMs Parallels Aryaka Aryaka Liquidware Azul 8. Conclusion 1. Introduction Virtualization on virtual machines (VMs) is a technology that enables multiple operating systems and applications to run on a single physical server or host. It has become essential to modern IT infrastructures, allowing businesses to optimize resource utilization, increase flexibility, and reduce costs. Embracing virtualization on VMs offers many business benefits, including improved disaster recovery, increased efficiency, enhanced security, and better scalability. In this digital age, where businesses rely heavily on technology to operate and compete, virtualization on VMs has become a crucial strategy for staying competitive and achieving business success. Organizations need to be agile and responsive to changing customer demands and market trends. Rather than focusing on consolidating resources, the emphasis now lies on streamlining operations, maximizing productivity, and optimizing convenience. 2. Types of Virtualization on VMs 2.1 Server virtualization The server virtualization process involves dividing a physical server into several virtual servers. This allows organizations to consolidate multiple physical servers onto a single physical server, which leads to cost savings, improved efficiency, and easier management. Server virtualization is one of the most common types of virtualization used on VMs. Consistent stability/reliability is the most critical product attributes IT decision-makers look for when evaluating server virtualization solutions. Other important factors include robust disaster recovery capabilities and advanced security features. Server Virtualization Market was valued at USD 5.7 Billion in 2018 and is projected to reach USD 9.04 Billion by 2026, growing at a CAGR of 5.9% from 2019 to 2026. (Source: Verified Market Research) 2.2 Storage virtualization Combining multiple network storage devices into an integrated virtual storage device, storage virtualization facilitates a cohesive and efficient approach to data management within a data center. IT administrators can allocate and manage the virtual storage unit with the help of management software, which facilitates streamlined storage tasks like backup, archiving, and recovery. There are three types of storage virtualization: file-level, block-level, and object-level. File-level consolidates multiple file systems into one virtualized system for easier management. Block-level abstracts physical storage into logical volumes allocated to VMs. Object-level creates a logical storage pool for more flexible and scalable storage services to VMs. The storage virtualization segment held an industry share of more than 10.5% in 2021 and is likely to observe considerable expansion through 2030 (Source: Global Market Insights) 2.3 Network virtualization Any computer network has hardware elements such as switches, routers, load balancers and firewalls. With network virtualization, virtual machines can communicate with each other across virtual networks, even if they are on different physical hosts. Network virtualization can also enable the creation of isolated virtual networks, which can be helpful for security purposes or for creating test environments. The following are two approaches to network virtualization: 2.3.1 Software-defined networking Software-defined networking (SDN) controls traffic routing by taking over routing management from data routing in the physical environment. For example, programming the system to prioritize video call traffic over application traffic to ensure consistent call quality in all online meetings. 2.3.2 Network function virtualization Network function virtualization technology combines the functions of network appliances, such as firewalls, load balancers, and traffic analyzers, that work together to improve network performance. The global Network function virtualization market size was valued at USD 12.9 billion in 2019 and is projected to reach USD 36.3 billion by 2024, at a CAGR of 22.9%, during the forecast period(2019-2024). (Source: MarketsandMarkets) 2.4 Data virtualization Data virtualization is the process of abstracting, organizing, and presenting data in a unified view that applications and users can access without regard to the data's physical location or format. Using virtualization techniques, data virtualization platforms can create a logical data layer that provides a single access point to multiple data sources, whether on-premises or in the cloud. This logical data layer is then presented to users as a single, virtual database, making it easier for applications and users to access and work with data from multiple sources and support cross-functional data analysis. Data Virtualization Market size was valued at USD 2.37 Billion in 2021 and is projected to reach USD 13.53 Billion by 2030, growing at a CAGR of 20.2% from 2023 to 2030. (Source: Verified Market Research) 2.5 Application virtualization In this approach, the applications are separated from the underlying hardware and operating system and encapsulated in a virtual environment, which can run on any compatible hardware and operating system. With application virtualization, the application is installed and configured on a virtual machine, which can then be replicated and distributed to multiple end-users. For example, users can run a Microsoft Windows application on a Linux machine without changing the machine configuration. According to a report, the global application virtualization market size is predicted to grow from USD 2.2 billion in 2020 to USD 4.4 billion by 2025, at a CAGR of 14.7% during the period of 2020-2025. (Source: MarketsandMarkets) 2.6 Desktop virtualization In desktop virtualization, a single physical machine can host multiple virtual machines, each with its own operating system and desktop environment. Users can access these virtual desktops remotely through a network connection, allowing them to work from anywhere and on any device. Desktop virtualization is commonly used in enterprise settings to provide employees with a secure and flexible way to access their work environment. The desktop virtualization market is anticipated to register a CAGR of 10.6% over the forecast period (2018-28). (Source: Mordor Intelligence) 3. Impact of Virtualized VMs on Business Enterprises Virtualization can increase the adaptability of business processes. The servers can support different operating systems (OS) and applications as the software is decoupled from the hardware. Business processes can be run on virtual computers, with each virtual machine running its own OS, applications, softwares and set of programs. 3.1 Virtualization as a Game-Changer for Business Models The one server, one application model can be abolished using virtualization, which was inefficient because most servers were underutilized. Instead, one server can become many virtual machines using virtualization software, each running on a different operating system such as Windows, Linux, or Apache. Virtualization has made it possible for companies to fit more virtual servers onto fewer physical devices, saving them space, power, and time spent managing them. The adoption of virtualization services is significantly increased by industrial automation systems. Industrial automation suppliers offer new-generation devices to virtualize VMs and software-driven industrial automation operations. This will solve problems with important automation equipment like Programmable Logic Controller (PLCs) and Distributed Control Systems (DCS), leading to more virtualized goods and services in industrial automation processes. 3.2 Evaluating IT Infrastructure Reformation IT infrastructure evaluation for virtualization needs to look at existing systems and processes along with finding opportunities and shortcomings. Cloud computing, mobile workforces, and app compatibility cause this growth. Over the last decade, these areas have shifted from conventional to virtual infrastructure. • Capacity on Demand: It is a concept that refers to the ability to quickly and easily deploy virtual servers, either on-premise or through a hosting provider. This is made possible through the use of virtualization technologies. These technologies allow businesses to create multiple virtual instances of servers that can be easily scaled up or down as per the requirement, providing businesses with access to IT capacity on demand. • Disaster Recovery (DR): DR is a critical consideration in evaluating IT infrastructure reformation for virtualization. Virtualization technology enables businesses to create virtual instances of servers that run multiple applications, which eliminates the need for robust DR solutions that can be expensive and time-consuming to implement. As a result, businesses can save costs by leveraging the virtual infrastructure for DR purposes. • Consumerization of IT: The consumerization of IT refers to the increasing trend of employees using personal devices and applications in their work environments. This has resulted in a need for businesses to ensure that their IT infrastructure can support a diverse range of devices and applications. Virtual machines enable businesses to create virtual desktop environments that can be accessed from any device with an internet connection, thereby providing employees with a consistent and secure work environment regardless of their device. 3.3 Virtualization Impact on Business Agility Virtualization has emerged as a valuable tool for enhancing business agility by allowing firms to respond quickly, efficiently, and cost-effectively to market changes. By enabling rapid installation and migration of applications and services across systems, the migration to the virtualized systems has allowed companies to achieve significant operational flexibility, responsiveness, and scalability gains. According to a poll conducted by Tech Target, 66% of the firms have reported an increase in agility due to virtualization adoption. This trend is expected to rise, driven by growing demand for cost-effective and efficient IT solutions across various industries. In line with this, a comprehensive analysis has projected that the market for virtualization software was estimated to be worth USD 45.51 billion in 2021. It is anticipated to grow to USD 223.35 billion by 2029, with a CAGR of 22.00% predicted for the forecast period of 2022–2029, including application, network, and hardware virtualization. (Source: Data Bridge) This is primarily attributed to the growing need for businesses to improve their agility and competitiveness by leveraging advanced virtualization technologies and solutions for applications and servers. 4. How can Businesses Scale ROI with Adoption of Virtualization in Virtual Machines? Businesses looking to boost their ROI have gradually shifted to Virtualizing VMs, in the past years. According to a recent study, VM virtualization helps businesses reduce their hardware and maintenance costs by up to 50%, significantly impacting their bottom line. Server consolidation helps reduce hardware costs and improve resource utilization, as businesses allocate resources, operating systems, and applications dynamically based on workload demand. Utilizing application virtualization, in particular, can assist businesses in optimizing resource utilization by as much as 80%. Software-defined Networking (SDN) allows new devices, some with previously unsupported operating systems, to be more easily incorporated into an enterprise’s IT environment. The telecom industry can greatly benefit from the emergence of Network Functions Virtualization (NFV), SDN, and Network Virtualization, as these technologies provide significant advantages. The NFV idea virtualizes and effectively joins service provider network elements on multi-tenant industry-standard servers, switches, and storage. To leverage the benefits of NFV, telecom service providers have heavily invested in NFV services. By deploying NFV and application virtualization together, organizations can create a more flexible and scalable IT infrastructure that responds to changing business needs more effectively. 5. Risks and Challenges of Virtual Machines in the Cloud 5.1 Resource Distribution: Resource availability is crucial when running applications in a virtual machine, as it leads to increased resource consumption. The resource distribution in VMs is typically managed by a hypervisor or virtual machine manager responsible for allocating resources to the VMs based on their specific requirements. A study found that poor resource management can lead to overprovisioning, increasing cloud costs by up to 70%. (Source: Gartner) 5.2 VM Sprawl: 82% of companies experienced VM sprawl, with the average organization having 115% more VMs than they need, as per a survey. (Source: Veeam) VM sprawl can occur in virtualization when an excessive proliferation of virtual machines is not effectively managed or utilized, leading to many underutilized or inactive VMs. This can lead to increased resource consumption, higher costs, and reduced performance. 5.3 Backward Compatibility: Backward compatibility can be particularly challenging in virtualized systems, where applications may run on multiple operating systems than they were designed for. A recent study showed that 87% of enterprises have encountered software compatibility issues during their migration to the cloud for app virtualization. (Source: Flexera) 5.4 Conditional Network Monitoring: A study found that misconfigurations, hardware problems, and human error account for over 60% of network outages. (Source: SolarWinds) Network monitoring tools can help organizations monitor virtual network traffic and identify potential network issues affecting application performance in VMs. These tools also provide visibility into network traffic patterns, enabling IT teams to identify areas for optimization and improvement. 5.5 Interoperability: Interoperability issues are common when implementing cloud-based virtualization when integrating the virtualized environment with other on-premises or cloud-based systems. According to a report, around 50% of virtualization projects encounter interoperability issues that require extensive troubleshooting and debugging. (Source: Gartner) 6. Overcoming Roadblocks: Best Practices for Successful Execution of VMs 6.1 Unlocking the Power of Resource Distribution: By breaking up large, monolithic applications into smaller, more manageable components, virtualizing allows organizations to distribute resources effectively, enabling its users with varying needs to utilize the resources with optimum efficiency. With prioritizing resource distribution, resources such as CPU, memory, and storage can be dynamically allocated to virtual machines as needed. Businesses must frequently monitor and evaluate resource utilization data to better resource allocation and management. 6.2 Effective techniques for Avoiding VM Sprawl: VM sprawl can be addressed through a variety of techniques, including VM lifecycle management, automated provisioning, and regular audits of virtual machine usage. Tools such as virtualization management software, cloud management platforms, and monitoring tools can help organizations gain better visibility and control over their virtual infrastructure. Monitoring applications and workload requirements as well as establishing policies and procedures for virtual machine provisioning & decommissioning are crucial for businesses to avoid VM sprawl. 6.3 Backward Compatibility: A Comprehensive Solution: One of the solutions to backward compatibility challenges is to use virtualization technologies, such as containers or hypervisors, that allow older applications to run on newer hardware and software. Another solution is to use compatibility testing tools that can identify potential compatibility issues before they become problems. To ensure that virtual machines can run on different hypervisors or cloud platforms, businesses can implement standardized virtualization architectures that support a wide range of hardware and software configurations. 6.4 Performance Metrics: Businesses employing cloud-based virtualization must have reliable network monitoring in order to guarantee the best possible performance of their virtual workloads and to promptly detect and resolve any problems that may affect the performance. Businesses can improve their customers' experience in VMs by implementing a network monitoring solution that helps them locate slow spots, boost speed, and avoid interruptions. 6.5 Solutions for Interoperability in a Connected World: Standardized communication protocols and APIs help cloud-based virtualization setups to interoperate. Integrating middleware like enterprise service buses (ESBs) can consolidate system and application management. In addition, businesses can use cloud-native tools and services like Kubernetes for container orchestration or cloud-native databases for interoperability in virtual machines. 7. Five Leading Providers for Virtualization of VMs Aryaka Aryaka is a pioneer of a cloud-first architecture for the delivery of SD-WAN and, more recently, SASE. Using their proprietary, integrated technology and services, they ensure safe connectivity for businesses. They are named a Gartner ‘Voice of the Customer leader’ for simplifying the adoption of network and network security solutions with organization standards for shifting from legacy IT infrastructure to various modern deployments. Gigamon Gigamon provides a comprehensive network observability solution that enhances observability tools' capabilities. The solution helps IT organizations ensure security and compliance governance, accelerate the root-cause analysis of performance issues, and reduce the operational overhead of managing complex hybrid and multi-cloud IT infrastructures. Gigamon's solution offers a deep observability pipeline that harnesses actionable network-level intelligence to amplify the power of observability tools. Liquidware Liquidware is a software company that offers desktop and application virtualization solutions. Their services include user environment management, application layering, desktop virtualization, monitoring and analytics, and migration services. Using these services, businesses can improve user productivity, reduce complexity in managing applications, lower hardware costs, troubleshoot issues quickly, and migrate to virtualized environments efficiently. Azul Azul offers businesses Java runtime solutions. Azul Platform Prime is a cloud-based Java runtime platform that provides enhanced performance, scalability, and security. Azul provides 24/7 technical support and upgrades for Java applications. Their services improve Java application performance, dependability, and security for enterprises. Azul also provides Java application development and deployment training and consultancy. 8. Conclusion Virtualization of VMs in businesses boosts their ROI significantly. The integration of virtualization with DevOps practices could allow for more streamlined application delivery and deployment, with greater automation and continuous integration, thus achieving greater success in current competitive business landscape. We expect to see more advancements in developing new hypervisors and management tools in the coming years. Additionally, there will likely be an increased focus on security and data protection in virtualized environments, as well as greater integration with other emerging technologies like containerization and edge computing. Virtualization is set to transform the business landscape in future by facilitating the effective and safe deployment and management of applications as technology advances and new trends emerge. The future of virtualization looks promising as it continues to adapt to and revolutionize the changing needs of organizations, streamlining their operations, reducing carbon footprint, and improving overall sustainability. As such, virtualization will continue to be a crucial technology for businesses seeking to thrive in the digital age.

Read More

How virtualization helped Dell make a pandemic pivot

Article | April 14, 2021

Danny Cobb, fellow and vice president of engineering for Dell Technologies’ telco systems business, remembers his company cruising into early 2020: Kicking off a new fiscal year with its operating plan in place, supply chain nailed down and factories humming; people coming into the office each day to the usual routine of looking for parking spots and taking laptops down to the cafeteria. Then came March, and the first wave of the Covid-19 pandemic hit U.S. shores. In the course of one weekend, Dell pivoted to having more than 90% of its workforce working from home. That meant a dramatic shift in its network needs and operations – one that was only able to be accomplished so quickly because of virtualized infrastructure.

Read More

Spotlight

NexusTek

Thousands of small and medium-sized businesses depend on NexusTek to manage and optimize their IT and cloud environments for business continuity, productivity, operational efficiency and cost-effectiveness. With an all-encompassing services portfolio, infrastructure, high-touch personal attention and IT consulting expertise, NexusTek delivers true end-to-end, outsourced IT management to organizations nationwide.

Related News

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Server Virtualization

Panasonic Automotive Introduces Neuron High-Performance Compute (HPC) to Advance to a Software-Defined Mobility Future

PR Newswire | January 09, 2024

Panasonic Automotive Systems Company of America, a tier-one automotive supplier and a division of Panasonic Corporation of North America, announced its High-Performance Compute (HPC) system. Named Neuron, this innovation addresses the rapidly evolving mobility needs anticipated for software-defined vehicle advancements. As vehicles become more software reliant, vehicle systems must support the extended software lifecycle by enabling software upgrades and prolonging the supporting hardware capability. Cars rely on hardware and software compute platforms to process, share, sense, and derive insights to handle functions for assisted driving. Panasonic Automotive's Neuron HPC allows for not only software updates and upgrades but also hardware upgrades across platform lifecycles. The Neuron HPC can aggregate multiple computing zones to reduce the cost, weight and integration complexity of the vehicle by removing redundant components. Panasonic Automotive's design supports effortless up-integration with high-performance and heavy data input processing capability. Importantly, the design is upgradeable, scalable and future-proof across today's evolving in-vehicle platforms. Neuron HPC Architecture & Design Panasonic Automotive's High Performance Compute architecture could reduce the number of distributed electronic control units (ECUs) by up to 80%1 – allowing for faster, lighter, cross-domain computing for real-time, cross-functional communications. The Neuron HPC design is suited for any mobility platform including internal combustion engine, hybrid, fuel cell or electric vehicles. "In collaboration with OEMs, Panasonic Automotive has designed and met some of the largest central compute platform challenges in the industry in order to make the driving experience evolve with technology," said Andrew Poliak, CTO, Panasonic Automotive Systems Company of America. "Neuron maximizes performance, safety and innovation over the entire ownership of the consumer's vehicle and enables OEMs with a future-proof SDV platform for ensuing generations of mobility needs." Key Systems, UX Features & Technical Benefits With a streamlined design, the Neuron HPC incorporates up-integration capability by consolidating multiple ECUs into one centralized nucleus to handle all levels of ADAS, chassis, body, and in-cabin infotainment features. About Panasonic Automotive Systems Company of America  Panasonic Automotive Systems Company of America is a division company of Panasonic Corporation of North America and is a leading global supplier of automotive infotainment and connectivity system solutions. Panasonic Automotive Systems Company of America acts as the North American affiliate of Panasonic Automotive Systems Co., Ltd., which coordinates global automotive. Panasonic Automotive Systems Company of America is headquartered in Peachtree City, Georgia, with sales, marketing and engineering operations in Farmington Hills, Mich. About Panasonic Corporation of North America Newark, NJ-based Panasonic Corporation of North America is committed to creating a better life and a better world by enabling its customers through innovations in Sustainable Energy, Immersive Entertainment, Integrated Supply Chains and Mobility Solutions. The company is the principal North American subsidiary of Osaka, Japan-based Panasonic Corporation. One of Interbrand's Top 100 Best Global Brands of 2023, Panasonic is a leading technology partner and integrator to businesses, government agencies and consumers across the region.

Read More

Server Virtualization

AELF Partners with ChainsAtlas to Pioneer Interoperability in Blockchain

PR Newswire | January 09, 2024

aelf is advancing cross-chain interoperability through a strategic partnership with ChainsAtlas. By utilising ChainsAtlas' innovative virtualisation technology, aelf will enable decentralised applications (dApps) from diverse blockchains to seamlessly migrate and integrate into the aelf blockchain, regardless of the dApps' smart contract specifications. This collaboration marks a significant step towards a globally interconnected and efficient blockchain ecosystem, breaking down the silos between blockchains. Khaniff Lau, Business Development Director at aelf, shares, "The strategic partnership with ChainsAtlas is a significant step towards realising our vision of a seamlessly interconnected blockchain world. With this integration, aelf is set to become a hub for cross-chain activities, enhancing our ability to support a wide array of dApps, digital assets, and Web2 apps. This collaboration is not just about technology integration; it's about shaping the future of how services and products on blockchains interact and operate in synergy." Jan Hanken, Co-founder of ChainsAtlas, says, "ChainsAtlas was always built to achieve two major goals: to make blockchain development accessible to a broad spectrum of developers and entrepreneurs and, along that path, to pave the way for a truly omnichain future." "By joining forces with aelf, we are bringing that visionary future much closer to reality. As we anticipate the influx of creativity from innovators taking their first steps into the world of Web3 on aelf, driven by ChainsAtlas technology, we are excited to see these groundbreaking ideas come to life," adds Hanken. The foundation for true cross-chain interoperability is being built as aelf integrates ChainsAtlas' Virtualization Unit (VU), enabling the aelf blockchain to accommodate both EVM and non-EVM digital assets. This cross-chain functionality is accomplished through ChainsAtlas' virtualisation technology, allowing aelf to interpret and execute smart contracts written in other languages supported by ChainsAtlas, while also establishing state transfer mechanisms that facilitate seamless data and asset flow between aelf and other blockchains. Through this partnership, aelf blockchain's capabilities will be enhanced as it is able to support a more comprehensive range of dApps and games, and developers from diverse coding backgrounds will now be empowered to build on aelf blockchain. This partnership will also foster increased engagement within the Web3 community as users can gain access to a more diverse range of digital assets on aelf. Looking ahead, the partnership between aelf and ChainsAtlas will play a pivotal role in advancing the evolution of aelf's sidechains by enabling simultaneous execution of program components across multiple VUs on different blockchains. About aelf aelf, a high-performance Layer 1 featuring multi-sidechain technology for unlimited scalability. aelf blockchain is designed to power the development of Web3 and support its continuous advancement into the future. Founded in 2017 with its global hub based in Singapore, aelf is one of the pioneers of the mainchain-sidechain architecture concept. Incorporating key foundational components, including AEDPoS, aelf's variation of a Delegated Proof-of-Stake (DPoS) consensus protocol; parallel processing; peer-to-peer (P2P) network communication; cross-chain bridges, and a dynamic side chain indexing mechanism, aelf delivers a highly efficient, safe, and modular ecosystem with high throughput, scalability, and interoperability. aelf facilitates the building, integrating, and deploying of smart contracts and decentralised apps (dApps) on its blockchain with its native C# software development kit (SDK) and SDKs in other languages, including Java, JS, Python, and Go. aelf's ecosystem also houses a range of dApps to support a flourishing blockchain network. aelf is committed to fostering innovation within its ecosystem and remains dedicated to driving the development of Web3 and the adoption of blockchain technology. About ChainsAtlas ChainsAtlas introduces a new approach to Web3 infrastructure, blending multiple blockchain technologies and smart contract features to create a unified, efficient processing network. Its core innovation lies in virtualization-enabled smart contracts, allowing consistent software operation across different blockchains. This approach enhances decentralized applications' complexity and reliability, promoting easier integration of existing software into the blockchain ecosystem. The team behind ChainsAtlas, driven by the transformative potential of blockchain, aims to foster global opportunities and equality. Their commitment to building on existing blockchain infrastructure marks a significant step towards a new phase in Web3, where advanced and reliable decentralized applications become the norm, setting new standards for the future of decentralized networks.

Read More

Virtualized Environments

VeriSilicon Unveils the New VC9800 IP for Next Generation Data Centers

Business Wire | January 09, 2024

VeriSilicon today unveiled its latest VC9800 series Video Processor Unit (VPU) IP with enhanced video processing performance to strengthen its presence in the data center applications. The newly launched series IP caters to the advanced requirements of next generation data centers including video transcoding servers, AI servers, virtual cloud desktops, and cloud gaming. The VC9800 series of VPU IP boasts high performance, high throughput, and server-level multi-stream encoding and decoding capabilities. It can handle up to 256 streams and support all mainstream video formats, including the new advanced format VVC. Through Rapid Look Ahead encoding, the VC9800 series IP improves video quality significantly with low memory footprint and encoding latency. With capable of supporting 8K encoding and decoding, it offers enhanced video post-processing and multi-channel encoding at various resolutions, thus achieves an efficient transcoding solution. The VC9800 series of VPU IP can seamlessly interface with Neural Network Processor (NPU) IP, enabling a complete AI-video pipeline. When combined with VeriSilicon’s Graphics Processor Unit (GPU) IP, the subsystem solution is able to deliver enhanced gaming experiences. In addition, the hardware virtualization, super resolution image enhancement, and AI-enabled encoding functions of this series IP also offer effective solutions for virtual cloud desktops. “VeriSilicon’s advanced video transcoding technology continues leading in Data Center domain. We are working closely with global leading customers to develop comprehensive video processing subsystem solutions to meet the requirements of the latest Data Centers,” said Wei-Jin Dai, Executive VP and GM of IP Division of VeriSilicon. “For AI computing, our video post-processing capabilities have been extended to smoothly interact with NPUs, ensuring OpenCV-level accuracy. We’ve also introduced super resolution technology to the video processing subsystem, elevating image quality and ultimately enhancing user experiences for cloud computing and smart display.” About VeriSilicon VeriSilicon is committed to providing customers with platform-based, all-around, one-stop custom silicon services and semiconductor IP licensing services leveraging its in-house semiconductor IP.

Read More

Server Virtualization

Panasonic Automotive Introduces Neuron High-Performance Compute (HPC) to Advance to a Software-Defined Mobility Future

PR Newswire | January 09, 2024

Panasonic Automotive Systems Company of America, a tier-one automotive supplier and a division of Panasonic Corporation of North America, announced its High-Performance Compute (HPC) system. Named Neuron, this innovation addresses the rapidly evolving mobility needs anticipated for software-defined vehicle advancements. As vehicles become more software reliant, vehicle systems must support the extended software lifecycle by enabling software upgrades and prolonging the supporting hardware capability. Cars rely on hardware and software compute platforms to process, share, sense, and derive insights to handle functions for assisted driving. Panasonic Automotive's Neuron HPC allows for not only software updates and upgrades but also hardware upgrades across platform lifecycles. The Neuron HPC can aggregate multiple computing zones to reduce the cost, weight and integration complexity of the vehicle by removing redundant components. Panasonic Automotive's design supports effortless up-integration with high-performance and heavy data input processing capability. Importantly, the design is upgradeable, scalable and future-proof across today's evolving in-vehicle platforms. Neuron HPC Architecture & Design Panasonic Automotive's High Performance Compute architecture could reduce the number of distributed electronic control units (ECUs) by up to 80%1 – allowing for faster, lighter, cross-domain computing for real-time, cross-functional communications. The Neuron HPC design is suited for any mobility platform including internal combustion engine, hybrid, fuel cell or electric vehicles. "In collaboration with OEMs, Panasonic Automotive has designed and met some of the largest central compute platform challenges in the industry in order to make the driving experience evolve with technology," said Andrew Poliak, CTO, Panasonic Automotive Systems Company of America. "Neuron maximizes performance, safety and innovation over the entire ownership of the consumer's vehicle and enables OEMs with a future-proof SDV platform for ensuing generations of mobility needs." Key Systems, UX Features & Technical Benefits With a streamlined design, the Neuron HPC incorporates up-integration capability by consolidating multiple ECUs into one centralized nucleus to handle all levels of ADAS, chassis, body, and in-cabin infotainment features. About Panasonic Automotive Systems Company of America  Panasonic Automotive Systems Company of America is a division company of Panasonic Corporation of North America and is a leading global supplier of automotive infotainment and connectivity system solutions. Panasonic Automotive Systems Company of America acts as the North American affiliate of Panasonic Automotive Systems Co., Ltd., which coordinates global automotive. Panasonic Automotive Systems Company of America is headquartered in Peachtree City, Georgia, with sales, marketing and engineering operations in Farmington Hills, Mich. About Panasonic Corporation of North America Newark, NJ-based Panasonic Corporation of North America is committed to creating a better life and a better world by enabling its customers through innovations in Sustainable Energy, Immersive Entertainment, Integrated Supply Chains and Mobility Solutions. The company is the principal North American subsidiary of Osaka, Japan-based Panasonic Corporation. One of Interbrand's Top 100 Best Global Brands of 2023, Panasonic is a leading technology partner and integrator to businesses, government agencies and consumers across the region.

Read More

Server Virtualization

AELF Partners with ChainsAtlas to Pioneer Interoperability in Blockchain

PR Newswire | January 09, 2024

aelf is advancing cross-chain interoperability through a strategic partnership with ChainsAtlas. By utilising ChainsAtlas' innovative virtualisation technology, aelf will enable decentralised applications (dApps) from diverse blockchains to seamlessly migrate and integrate into the aelf blockchain, regardless of the dApps' smart contract specifications. This collaboration marks a significant step towards a globally interconnected and efficient blockchain ecosystem, breaking down the silos between blockchains. Khaniff Lau, Business Development Director at aelf, shares, "The strategic partnership with ChainsAtlas is a significant step towards realising our vision of a seamlessly interconnected blockchain world. With this integration, aelf is set to become a hub for cross-chain activities, enhancing our ability to support a wide array of dApps, digital assets, and Web2 apps. This collaboration is not just about technology integration; it's about shaping the future of how services and products on blockchains interact and operate in synergy." Jan Hanken, Co-founder of ChainsAtlas, says, "ChainsAtlas was always built to achieve two major goals: to make blockchain development accessible to a broad spectrum of developers and entrepreneurs and, along that path, to pave the way for a truly omnichain future." "By joining forces with aelf, we are bringing that visionary future much closer to reality. As we anticipate the influx of creativity from innovators taking their first steps into the world of Web3 on aelf, driven by ChainsAtlas technology, we are excited to see these groundbreaking ideas come to life," adds Hanken. The foundation for true cross-chain interoperability is being built as aelf integrates ChainsAtlas' Virtualization Unit (VU), enabling the aelf blockchain to accommodate both EVM and non-EVM digital assets. This cross-chain functionality is accomplished through ChainsAtlas' virtualisation technology, allowing aelf to interpret and execute smart contracts written in other languages supported by ChainsAtlas, while also establishing state transfer mechanisms that facilitate seamless data and asset flow between aelf and other blockchains. Through this partnership, aelf blockchain's capabilities will be enhanced as it is able to support a more comprehensive range of dApps and games, and developers from diverse coding backgrounds will now be empowered to build on aelf blockchain. This partnership will also foster increased engagement within the Web3 community as users can gain access to a more diverse range of digital assets on aelf. Looking ahead, the partnership between aelf and ChainsAtlas will play a pivotal role in advancing the evolution of aelf's sidechains by enabling simultaneous execution of program components across multiple VUs on different blockchains. About aelf aelf, a high-performance Layer 1 featuring multi-sidechain technology for unlimited scalability. aelf blockchain is designed to power the development of Web3 and support its continuous advancement into the future. Founded in 2017 with its global hub based in Singapore, aelf is one of the pioneers of the mainchain-sidechain architecture concept. Incorporating key foundational components, including AEDPoS, aelf's variation of a Delegated Proof-of-Stake (DPoS) consensus protocol; parallel processing; peer-to-peer (P2P) network communication; cross-chain bridges, and a dynamic side chain indexing mechanism, aelf delivers a highly efficient, safe, and modular ecosystem with high throughput, scalability, and interoperability. aelf facilitates the building, integrating, and deploying of smart contracts and decentralised apps (dApps) on its blockchain with its native C# software development kit (SDK) and SDKs in other languages, including Java, JS, Python, and Go. aelf's ecosystem also houses a range of dApps to support a flourishing blockchain network. aelf is committed to fostering innovation within its ecosystem and remains dedicated to driving the development of Web3 and the adoption of blockchain technology. About ChainsAtlas ChainsAtlas introduces a new approach to Web3 infrastructure, blending multiple blockchain technologies and smart contract features to create a unified, efficient processing network. Its core innovation lies in virtualization-enabled smart contracts, allowing consistent software operation across different blockchains. This approach enhances decentralized applications' complexity and reliability, promoting easier integration of existing software into the blockchain ecosystem. The team behind ChainsAtlas, driven by the transformative potential of blockchain, aims to foster global opportunities and equality. Their commitment to building on existing blockchain infrastructure marks a significant step towards a new phase in Web3, where advanced and reliable decentralized applications become the norm, setting new standards for the future of decentralized networks.

Read More

Events